本文主要是介绍【图像修复】基于matlab GUI FMM+Criminisi算法彩色图像修复【含Matlab源码 1507期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
一、FMM+Criminisi算法简介
1 FMM算法
FMM算法是由Telea在2004年提出的,主要思想是先处理待修复区域边缘的像素,然后逐步向内推进,直到所有空洞点修复完毕。设Λ为待修复区域,Λ为区域Λ的边界,p为区域Λ的任意一点,在点p周围已知图像内选择一邻域U(p)。为了填充更加精确,增加已知像素点q对待填充空洞点p的影响,添加一个权重函数w(p,q),在邻域U(p)尺度较小时,对点p一阶估计:
其中I位像素值,I(q)为q点的梯度,w(p,q)=dir(p,q)dst(p,q)lev(p,q),dit(p,q)为距离因子,反映了已知像素q对待填充空洞点p的距离影响;lev(p,q)为水平集因子,反映了到达时间的影响;dir(p,q)为方向因子,反映了已知像素q对待填充空洞点p的纹理相关性的影响。对边界填充完后,需要不断迭代上述步骤,逐渐收缩边界直至空洞区域修复完毕。
2 Criminisi 算法
Criminisi 算法将图像结构信息作为图像修复顺序参考,在修复过程中能根据图像信息合理安排修复顺序。Criminisi 算法除了对大区域破损图像的修复有较好效果,其执行效率也有明显优势。
2.1 Criminisi 算法原理
2.2 算法流程
Criminisi 算法流程关键在于破损区域的填补顺序。实现步骤为:
二、部分源代码
function varargout = mygui(varargin)
% MYGUI MATLAB code for mygui.fig
% MYGUI, by itself, creates a new MYGUI or raises the existing
% singleton*.
%
% H = MYGUI returns the handle to a new MYGUI or the handle to
% the existing singleton*.
%
% MYGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MYGUI.M with the given input arguments.
%
% MYGUI('Property','Value',...) creates a new MYGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before mygui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to mygui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES% Edit the above text to modify the response to help mygui% Last Modified by GUIDE v2.5 25-Nov-2021 09:35:16% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...'gui_Singleton', gui_Singleton, ...'gui_OpeningFcn', @mygui_OpeningFcn, ...'gui_OutputFcn', @mygui_OutputFcn, ...'gui_LayoutFcn', [] , ...'gui_Callback', []);
if nargin && ischar(varargin{1})gui_State.gui_Callback = str2func(varargin{1});
endif nargout[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
elsegui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT% --- Executes just before mygui is made visible.
function mygui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to mygui (see VARARGIN)% Choose default command line output for mygui
handles.output = hObject;% Update handles structure
guidata(hObject, handles);% UIWAIT makes mygui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
addpath(genpath('FFM_inpaint'));
addpath(genpath('get_mask'));
addpath(genpath('criminisi_inpaint'));set(figure,'Visible','off');global I1_g I2_g I1_mask I2_mask;
I1_mask=[];
I2_mask=[];
img1 = imread('img1.JPG');
img1 = imresize(img1, 0.4); %为了提高运算速度,缩小图片
I1_g = img1;img2 = imread('img2.JPG');
img2 = imresize(img2, 0.2); %缩小图片
I2_g = img2;axes(handles.axes1);
imshow(img1);% --- Outputs from this function are returned to the command line.
function varargout = mygui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)% Get default command line output from handles structure
varargout{1} = handles.output;% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1
global I1_g I2_g;
pic_num=get(hObject,'Value');
if pic_num==1img = I1_g;
elseimg = I2_g;
end
axes(handles.axes1);
imshow(img);% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))set(hObject,'BackgroundColor','white');
end% --- Executes on button press in pushbutton_mask.
function pushbutton_mask_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton_mask (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global I1_g I2_g I1_mask I2_mask line2_thick_mask;
pic_num=get(handles.popupmenu1,'Value');
if pic_num==1I1_gray = rgb2gray(I1_g);I1_mask = get_mask_1(I1_gray, floor(509*size(I1_gray,1)/719)); elseend
function BW = imbinarize(I,varargin) %#codegen
%imbinarize Binarize image by thresholding.% % Syntax
% ------
%
% BW = imbinarize(I)
% BW = imbinarize(I,method)
% BW = imbinarize(I,'adaptive',Param,Value,...)
% BW = imbinarize(I,t)
%
% Input Specs
% -----------
%
% I:
% real
% non-sparse
% 2d
% uint8, uint16, uint32, int8, int16, int32, single or double
%
% method:
% string with value: 'global' or 'adaptive'
% default: 'global'
%
% Sensitivity:
% numeric
% real
% non-sparse
% scalar
% non-negative
% <= 1
% default: 0.5
% converted to double
%
% ForegroundPolarity:
% string with value either 'bright' or 'dark'
% default: 'bright'
%
% t:
% numeric
% real
% non-sparse
% 2d
% either scalar or matrix of the same size as I
%
% Output Specs
% ------------
%
% BW:
% logical
% 2D matrix
% same size as I
%% Validate the input image
validateImage(I);% Parse and validate optional inputs
[isNumericThreshold,options] = parseOptionalInputs(I,varargin{:});
coder.internal.prefer_const(isNumericThreshold,options);if isNumericThreshold% BW = imbinarize(I,t)BW = binarize(I,options.t);
elseif strcmp(options.method,'global')% BW = imbinarize(I,'global')t = computeGlobalThreshold(I);else% BW = imbinarize(I,'adaptive',...)t = adaptthresh(I,options.sensitivity,'ForegroundPolarity',options.polarity);endBW = binarize(I,t);
end
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]张汝峰,项璟,陈鹏,张亚娟,张喜英,薛瑞.基于FMM算法的深度图像修复研究[J].湖北农机化. 2020,(01)
[6]齐玲,王锦.一种基于Criminisi算法改进的图像修复技术[J].软件导刊. 2019,18(04)
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]何埜,李光耀,肖莽,谢力,彭磊,唐可.基于深度信息的图像修复算法[J].计算机应用. 2015,35(10)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【图像修复】基于matlab GUI FMM+Criminisi算法彩色图像修复【含Matlab源码 1507期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!