[转]Kalman滤波

2024-04-10 21:48
文章标签 滤波 kalman

本文主要是介绍[转]Kalman滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       Kalman滤波是一种递归过程,主要有两个更新过程:时间更新和观测更新,其中时间更新主要包括状态预测和协方差预测,主要是对系统的预测,而观测更新主要包括计算卡尔曼增益、状态更新和协方差更新,因此整个递归过程主要包括五个方面的计算:1)状态预测;2)协方差预测;3)卡尔曼增益;4)状态更新;5)协方差更新;

       用数学公式表示,如下:

状态预测:

        (1)

其中,X(k|k)是k时刻的系统状态,U(k)是k时刻对系统的控制量(如果没有控制量,可以为零),是状态转移矩阵,是系统参数;

主要含义:X(k-1|k-1)是上一状态的最优结果,X(k|k-1)是利用上一状态预测得到的结果,这一步主要更新系统结果。

协方差预测:

               (2)

其中,P(k-1|k-1)是上一状态X(k-1|k-1)对应的协方差,P(k|k-1)是X(k|k-1)对应的协方差,Q是系统过程噪声(假设为高斯白噪声)的协方差矩阵;

主要含义:对系统结果对应的协方差进行更新;

计算卡尔曼增益:


其中,K为卡尔曼增益,H为观测矩阵,R为测量噪声(同样假设为高斯白噪声)对应的协方差矩阵;

主要含义:用于状态更新和协方差更新中,因为前两个预测我们得到了当前状态的预测结果,然后再得到当前状态的观测值,通过预测值和观测值,以及增益,就可以得到当前状态的最优状态估计,也就是状态更新。

状态更新:


其中,Z(k)是k时刻的观测值;

主要含义:利用当前状态的观测值和预测值,及增益,计算k时刻下的最优状态估计值X(k|k),对应着公式(1)中的X(k-1|k-1);

协方差更新:


其中,I为单位矩阵;

主要含义:前面已经更新了状态,为了保证递推下去,还要跟新状态对应的协方差矩阵,对应着公式(2)中的P(k-1|k-1);

        最后,注意既然是一个递归过程,就需要给出参数的初始值,递归过程是否很好的收敛取决于初始值的选取,所以要根据实际情况合适选择。



这篇关于[转]Kalman滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892242

相关文章

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

6.4双边滤波

目录 实验原理 示例代码1 运行结果1 实验代码2 运行结果2 实验原理 双边滤波(Bilateral Filtering)是一种非线性滤波技术,用于图像处理中去除噪声,同时保留边缘和细节。这种滤波器结合了空间邻近性和像素值相似性的双重加权,从而能够在去噪(平滑图像)的同时保留图像的边缘细节。双边滤波器能够在的同时,保持边缘清晰,因此非常适合用于去除噪声和保持图像特征。在Op

6.3中值滤波

目录 实验原理 示例代码1 运行结果1 示例代码2 运行结果2 实验原理 中值滤波(Median Filtering)是一种非线性滤波技术,常用于图像处理中去除噪声,特别是在保留边缘的同时减少椒盐噪声(salt-and-pepper noise)。OpenCV中的cv::medianBlur函数可以实现中值滤波。 函数原型 void medianBlur( InputAr

【控制算法 数据处理】一阶滤波算法

简单介绍: 一阶滤波算法是比较常用的滤波算法,它的滤波结果=a*本次采样值+(1-a)*上次滤波结果,其中,a为0~1之间的数。一阶滤波相当于是将新的采样值与上次的滤波结果计算一个加权平均值。a的取值决定了算法的灵敏度,a越大,新采集的值占的权重越大,算法越灵敏,但平顺性差;相反,a越小,新采集的值占的权重越小,灵敏度差,但平顺性好。优点是对周期干扰有良好的抑制作用,适用于波动频率比较高的场合,它

RSSI滤波方法

文章目录 一、均值滤波二、递推平均滤波三、中位值滤波四、狄克逊检验法滤波五、高斯滤波六、速度滤波七、卡尔曼滤波 一、均值滤波 均值滤波是指节点接收到另一节点的多个RSSI值之后,求其算式平均值,作为测试结果 R S S I ‾ = 1 n ∙ ∑ i = 1 n R S S I i \overline{RSSI} = \frac {1}{n} \bullet \sum_{i=1

CUDAPCL ROR点云滤波

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 该方法的具体原理为输入的点云中每一个点设定一个范围(半径为r的圆),如果在该范围内没有达到某一个设定的点数值,则该数据点将会被删除,重复上述此过程直到最后一个数据点,即完成该滤波过程。 二、实现代码 ROR.cuh #ifndef ROR_GPU_CUH#define ROR_GPU_CU

matlab频域滤波

步骤: (1)计算原图像f(x,y)的DFT, (2) 讲频谱的零频点移动到频谱图的中心位置; (3)计算滤波器函数H(U,V)与F(U,V)的乘积G(U,V); (4)讲频谱G(U,V)的零频点移回到频谱图的坐上角。 (5)计算(4)的结果的傅立叶反变换g(x,y); (6)取g(x,y)的实部作为最终的滤波后的结果图像。   代码: 大家别激动的啦   代

工控常用滤波方法(限幅+中值+算术平均+滑动平均)

工控常用滤波方法 简介限幅滤波法中值滤波法算术平均滤波法滑动平均滤波 简介 在实际的工程应用中,实际反馈的信号由于是通过电压及电流转换而来的数字量信号,在现场可能会受到比较大的干扰问题,这样的扰动会影响控制系统的输出精度,也会使其产生比较大的偏差。 故在实际应用中,通常不会直接将反馈的信号作为信号输入,会在之前加一个滤波器以使数据更平滑,在此,非常有必要引入数字滤波的概念。

GAMES202——作业5 实时光线追踪降噪(联合双边滤波、多帧的投影与积累、À-Trous Wavelet 加速单帧降噪)

任务         1.实现单帧降噪         2.实现多帧投影         3.实现多帧累积         Bonus:使用À-Trous Wavelet 加速单帧降噪 实现         单帧降噪         这里实现比较简单,直接根据给出的联合双边滤波核的公式就能实现          Buffer2D<Float3> Denoiser::Fil

MATLAB代码|中心差分卡尔曼滤波(CDKF)的滤波例程,无需下载,直接复制到MATLAB上面就能运行

文章目录 CDKF介绍代码运行结果各模块解析初始化系统模型设置CDKF循环绘图 另有关于EKF和CDKF的对比程序:EKF+CDKF两个滤波的MATLAB程序,估计三轴位置,带中文注释—— https://blog.csdn.net/callmeup/article/details/136610153。 CDKF介绍 中心差分卡尔曼滤波(Central Differe