4d tensor

2024-04-10 08:18
文章标签 tensor 4d

本文主要是介绍4d tensor,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

偶然在一个ppt中看到了如下关于tensor的解释,清晰明白,所以post在这里,以备后续查看

 

根据这个理解:

theano中的input(4d tensor):【mini-batch size, number of input feature maps, image height, image width】

例如:【100, 10, 12,12】

weight matrix (4d tensor): 【 number of feature maps at layer m,number of feature maps at layer m-1, filter height, filter width】

例如:【10,20, 5,5】

 

这篇关于4d tensor的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890527

相关文章

Mindspore 初学教程 - 3. Tensor 张量

张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在  n n n 维空间内,有  n r n^{r} nr 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。 r r r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 张量是一种特殊的数据结构,

七. 部署YOLOv8检测器-load-save-tensor

目录 前言0. 简述1. 案例运行2. 补充说明3. 代码分析3.1 main.cpp3.2 create_data.py 结语下载链接参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》,链接。记录下个人学习笔记,仅供自己参考 本次课程我们来学习课程第六章—部署分类器,一起来学习利用 cnpy 库加载和保存 tensor 课程大纲可以看下面的思维导图

Pytorch:Tensor基本运算【add/sub/mul/div:加减乘除】【mm/matmul:矩阵相乘】【Pow/Sqrt/rsqrt:次方】【近似:floor...】【裁剪:clamp】

一、基本运算:加减乘除 1、乘法 1.1 a * b:element-wise 对应元素相乘 a * b:要求两个矩阵维度完全一致,即两个矩阵对应元素相乘,输出的维度也和原矩阵维度相同 1.2 torch.mul(a, b):element-wise 对应元素相乘 torch.mul(a, b):是矩阵a和b对应位相乘,a和b的维度必须相等,比如a的维度是(1, 2),b的维度是(1,

Pytorch:Tensor的高阶操作【where(按条件取元素)、gather(查表取元素)、scatter_(查表取元素)】【可并行计算,提高速度】

一、where:逐个元素按条件选取【并行计算,速度快】 torch.where(condition,x,y) #condition必须是tensor类型 condition的维度和x,y一致,用1和0分别表示该位置的取值 import torchcond = torch.tensor([[0.6, 0.7],[0.3, 0.6]])a = torch.tensor([[1., 1.],[

Pytorch:Tensor数组运算中的Broadcasting【广播机制】

简单来说,Broadcasting 可以这样理解:如果你有一个 m × n m×n m×n 的矩阵,让它加减乘除一个 1 × n 1×n 1×n 的矩阵,它会被复制 m m m 次,成为一个 m × n m×n m×n 的矩阵,然后再逐元素地进行加减乘除操作。 数组在进行矢量化运算时,要求数组的形状是相等的。当形状不相等的数组执行算术运算的时候,就会出现广播机制,该机制会对数组进行扩

tensorflow:超简单易懂 tensor list的使用 张量数组的使用 扩增 建立 append

构造张量数组: 最简单的方式: tensor_list=[tensor1,tensor2] 常用的方式(这个方式可以用于for循环) tensor_list=[]tensor_list.append(tensor1)tensor_list.append(tensor2) 张量数组的使用 批量处理张量数组里面的张量,之后将其存储到一个新的张量数组中 new_tensor_list

EXO:模型最终验证的地方;infer_tensor;step;MLXDynamicShardInferenceEngine

目录 EXO:模型最终验证的地方 EXO:infer_tensor  EXO:step  MXNet的 mx.array 类型是什么 NDArray优化了什么 1. 异步计算和内存优化 2. 高效的数学和线性代数运算 3. 稀疏数据支持 4. 自动化求导 举例说明 EXO:模型最终验证的地方 EXO:infer_tensor  这段代码定义了一个名为 in

Eigen::Tensor使用,定义高维矩阵

在实际项目中,需要存储大于等于三维的矩阵,而平常中我们使用Eigen::MatrixXd二维数据,这里我们使用Eigen::Tensor来定义 1.Using the Tensor module #include <unsupported/Eigen/CXX11/Tensor> 2.定义矩阵 2.一般矩阵 官方文档 // 定义一个2x3x4大小的矩阵Eigen::Tensor<f

tensor core实现矩阵乘法的详细解读

之前关于tensor core的介绍可以参考链接添加链接描述 基础的tensor core实现C=AB的代码可以参考下面这段内容: 上面代码的几个注意事项: 首先是加载mma.h头文件,这个是包含wmma模板类的头文件。 其次是设置的WMMA_M=16,WMMA_N=16,WMMA_K=8,这三个参数的表示的意思是,对于一个线程块内的一个warp来说,这个线程簇warp一次能处理的是[16,8]

【Pytorch】tensor 转置 t()

tensor的t()属性实现转置 >>> import torch>>> x = torch.Tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])>>> x1   2   3   4   56   7   8   9  10[torch.FloatTensor of size 2x5] >>> x.t()1   62   73   84   95  10