本文主要是介绍Pytorch:Tensor数组运算中的Broadcasting【广播机制】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
简单来说,Broadcasting 可以这样理解:如果你有一个 m × n m×n m×n 的矩阵,让它加减乘除一个 1 × n 1×n 1×n 的矩阵,它会被复制 m m m 次,成为一个 m × n m×n m×n 的矩阵,然后再逐元素地进行加减乘除操作。
数组在进行矢量化运算时,要求数组的形状是相等的。当形状不相等的数组执行算术运算的时候,就会出现广播机制,该机制会对数组进行扩展,使数组的shape属性值一样,这样,就可以进行矢量化运算了。下面通过一个例子进行说明:
arr1 = np.array([[0],[1],[2],[3]])
arr1.shape
# (4, 1)arr2 = np.array([1,2,3])
arr2.shape
# (3,)arr1+arr2
# 结果是:
array([[1, 2, 3],[2, 3, 4],[3, 4, 5],[4, 5, 6]])
上述代码中,数组arr1是4行1列,arr2是1行3列。这两个数组要进行相加,按照广播机制会对数组arr1和arr2都进行扩展,使得数组arr1和arr2都变成4行3列。
下面通过一张图来描述广播机制扩展数组的过程:
这句话乃是理解广播的核心。广播主要发生在两种情况,一种是两个数组的维数不相等,但是它们的后缘维度的轴长相符,另外一种是有一方的长度为1。
广播机制实现了时两个或两个以上数组的运算,即使这些数组的shape不是完全相同的,只需要满足如下任意一个条件即可。
- 如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,
或
- 如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度其中的一方的长度为1。
广播会在缺失和(或)长度为1的维度上进行。
广播机制需要扩展维度小的数组,使得它与维度最大的数组的shape值相同,以便使用元素级函数或者运算符进行运算。
如果是下面这样,则不匹配:
A (1d array): 10
B (1d array): 12
A (2d array): 2 x 1
B (3d array): 3 x 4 x 3
思考:下面两个ndarray是否能够进行运算?
arr1 = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
arr2 = np.array([[1], [3]])
arr1 = np.array([[1],[2]])
arr2 = np.array([[[2,1,5],[2,1,5]],[[4,5,6],[4,5,6]],[[7,8,9],[7,8,9]]])
arr1 = np.array([[1],[2]])
arr2 = np.array([[[2,1,5],[2,1,5],[2,1,5]],[[4,5,6],[4,5,6],[4,5,6]],[[7,8,9],[7,8,9],[7,8,9]]])
这篇关于Pytorch:Tensor数组运算中的Broadcasting【广播机制】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!