Eigen::Tensor使用,定义高维矩阵

2024-09-01 18:08

本文主要是介绍Eigen::Tensor使用,定义高维矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在实际项目中,需要存储大于等于三维的矩阵,而平常中我们使用Eigen::MatrixXd二维数据,这里我们使用Eigen::Tensor来定义

1.Using the Tensor module
#include <unsupported/Eigen/CXX11/Tensor>
2.定义矩阵
2.一般矩阵

官方文档

  // 定义一个2x3x4大小的矩阵Eigen::Tensor<float, 3> a(2, 3, 4);// 初始化为0a.setZero();// 访问元素a(0, 1, 0) = 12.0f;for (int i = 0; i < 2; i++) {for (int j = 0; j < 3; j++) {for (int k = 0; k < 4; k++) {std::cout << a(i, j, k) << " ";}std::cout << std::endl;}std::cout << std::endl << std::endl;}// 输出维度std::cout<<a.dimension(0)<<" "<<a.dimension(1)<<" "<<a.dimension(2)<<std::endl;

上面输出结果

0 0 0 0 
12 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 
0 0 0 02 3 4
2.固定大小矩阵TensorFixedSize

参考官方解释

The fixed sized equivalent of Eigen::Tensor<float, 3> t(3, 5, 7); is Eigen::TensorFixedSize<float, Size<3,5,7>> t;

这里我们定义

  // 固定 大小的Size 2x3x4Eigen::TensorFixedSize<float, Eigen::Sizes<2, 3, 4>> b;// 每个元素都设置固定值b.setConstant(3.f);for (int i = 0; i < 2; i++) {for (int j = 0; j < 3; j++) {for (int k = 0; k < 4; k++) {std::cout << b(i, j, k) << " ";}std::cout << std::endl;}std::cout << std::endl << std::endl;}

结果如下

3 3 3 3 
3 3 3 3 
3 3 3 3 3 3 3 3 
3 3 3 3 
3 3 3 3
3.常用函数API

参考从零开始编写深度学习库(四)Eigen::Tensor学习使用及代码重构
1.维度

  Eigen::Tensor<float, 2> a(3, 4);std::cout << "Dims " << a.NumDimensions;//=> Dims 2
  Eigen::Tensor<float, 2> a(3, 4);int dim1 = a.dimension(1);std::cout << "Dim 1: " << dim1;//=> Dim 1: 4

2.形状

  Eigen::Tensor<float, 2> a(3, 4);const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();std::cout << "Dim size: " << d.size << ", dim 0: " << d[0]<< ", dim 1: " << d[1];//=> Dim size: 2, dim 0: 3, dim 1: 4

3.矩阵元素个数

  Eigen::Tensor<float, 2> a(3, 4);std::cout << "Size: " << a.size();//=> Size: 12

4.初始化

  /// 1.// setConstant(const Scalar& val),用于把一个矩阵的所有元素设置成一个指定的常数。Eigen::Tensor<string, 2> a(2, 3);a.setConstant("yolo");std::cout << "String tensor: " << endl << a << endl << endl;//=>// String tensor:// yolo yolo yolo// yolo yolo yolo/// 2.// setZero() 全部置零a.setZero();/// 3.// setRandom() 随机初始化a.setRandom();std::cout << "Random: " << endl << a << endl << endl;//=>//Random://  0.680375    0.59688  -0.329554    0.10794// -0.211234   0.823295   0.536459 -0.0452059// 0.566198  -0.604897  -0.444451   0.257742/// 4.// setValues({..initializer_list}) 从列表、数据初始化Eigen::Tensor<float, 2> a(2, 3);a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});std::cout << "a" << endl << a << endl << endl;//=>// a// 0 1 2// 3 4 5//如果给定的数组数据,少于矩阵元素的个数,那么后面不足的元素其值不变:Eigen::Tensor<int, 2> a(2, 3);a.setConstant(1000);a.setValues({{10, 20, 30}});std::cout << "a" << endl << a << endl << endl;//=>// a// 10   20   30// 1000 1000 1000

4.运算
参考Eigen Tensor详解【二】
4.1 一元运算

<Operation> operator-() 求相反数
<Operation> sqrt() 平方根
<Operation> rsqrt() 逆平方根
<Operation> square() 平方
<Operation> inverse()求逆
<Operation> exp()指数
<Operation> log() log运算
<Operation> abs() 绝对值
<Operation> pow(Scalar exponent)
<Operation> operator * (Scalar scale) 乘以某个值
 
void testUnary()
{Eigen::Tensor<int, 2> a(2, 3);a.setValues({ {0, 1, 8}, {27, 64, 125} });Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);Eigen::Tensor<double, 2> sqrt = a.cast<double>().sqrt();Eigen::Tensor<double, 2> rsqrt = a.cast<double>().rsqrt();Eigen::Tensor<double, 2> square = a.cast<double>().square();Eigen::Tensor<double, 2> inverse = a.cast<double>().inverse();Eigen::Tensor<double, 2> exp = a.cast<double>().exp();Eigen::Tensor<double, 2> log = a.cast<double>().log();Eigen::Tensor<double, 2> abs = a.cast<double>().abs();Eigen::Tensor<int, 2> multiply = a * 2;std::cout << "a" << std::endl << a << std::endl <<std:: endl;
}

4.2 二元运算

<Operation> operator+(const OtherDerived& other)
<Operation> operator-(const OtherDerived& other)
<Operation> operator*(const OtherDerived& other)
<Operation> operator/(const OtherDerived& other)
<Operation> cwiseMax(const OtherDerived& other) //返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最大值填充
<Operation> cwiseMin(const OtherDerived& other)
//返回与原tensor同类型,同尺寸的tensor,且以两个原tensor的最小值填充
operator&&(const OtherDerived& other)
operator||(const OtherDerived& other)
operator<(const OtherDerived& other)
operator<=(const OtherDerived& other)
operator>(const OtherDerived& other)
operator>=(const OtherDerived& other)
operator==(const OtherDerived& other)
operator!=(const OtherDerived& other)
 
void testBinary()
{Eigen::Tensor<int, 2> a(2, 3);a.setValues({ {0, 1, 8}, {27, 64, 125} });Eigen::Tensor<int, 2> b = a * 3;std::cout << "a" << std::endl << a << std::endl << std::endl;std::cout << "b" << std::endl << b << std::endl << std::endl;std::cout << "a+b" << std::endl << a + b << std::endl << std::endl;std::cout << "a-b" << std::endl << a - b << std::endl << std::endl;std::cout << "a*b" << std::endl << a * b << std::endl << std::endl;std::cout << "a.cwiseMax(b)" << std::endl <<a.cwiseMax(b) << std::endl << std::endl;std::cout << "b.cwiseMax(a)" << std::endl << b.cwiseMax(a) << std::endl << std::endl;std::cout << "a.cwiseMin(b)" << std::endl << a.cwiseMin(b) << std::endl << std::endl;std::cout << "b.cwiseMin(a)" << std::endl << b.cwiseMin(a) << std::endl << std::endl;
}

4.3 三元运算和降维运算
看参考链接Eigen Tensor详解【二】

4.其他方式

参考Eigen构造使用三维矩阵
如果定义多维数据也可以使用Matrix模板来自定义,

Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>
Eigen::Matrix<Eigen::MatrixXd,1,1> a;
Eigen::Matrix<Eigen::Matrix<double,1,5>,1,1> a;Eigen::Matrix<Eigen::MatrixXd, 1, 1> a;//声明a,一个1*1矩阵
Eigen::MatrixXd b;      //声明b
b.setZero(1, 5); //对b初始化
b << 1, 2, 3, 4, 5;//对b赋值
a(0, 0) = b;//对a(0,0)赋值
std::cout << "a(0,0):  " << a(0, 0) << std::endl;//输出a(0,0)
std::cout << "b:  " << b << std::endl;//输出b
int row = a(0, 0).rows();//row为a(0,0)处矩阵的行维数
int col = a(0, 0).cols();//col为a(0,0)处矩阵的列维数
std::cout << "row:  " << row << "  col:  " << col << std::endl;//输出row和col值
参考

https://blog.csdn.net/hjimce/article/details/71710893
https://blog.csdn.net/fengshengwei3/article/details/103591178
http://eigen.tuxfamily.org/index.php?title=Tensor_support#Using_the_Tensor_module
https://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1TensorFixedSize.html
https://zhuanlan.zhihu.com/p/148019818

这篇关于Eigen::Tensor使用,定义高维矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127671

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器