对极几何基本概念

2024-04-10 08:08
文章标签 基本概念 几何 对极

本文主要是介绍对极几何基本概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

对极几何(Epipolar Geometry)描述的是两幅视图之间的内在射影关系,与外部场景无关,只依赖于摄像机内参数和这两幅试图之间的的相对姿态

  • 什么是对极几何粗略概念
  • 对极几何相关的一个重要约束5点共面约束
  • 对极几何的几个相关概念
  • 对应点的约束

1. 什么是对极几何·粗略概念

提到对极几何,一定是对二幅图像而言,对极几何实际上是“两幅图像之间的对极几何”,它是图像平面以基线为轴的平面束的交的几何(这里的基线是指连接摄像机中心的直线),以下图为例:对极几何描述的是左右两幅图像(点x和x’对应的图像)与以CC’为轴的平面束的交的几何!

这里写图片描述 这里写图片描述

  • 直线CC’为基线,以该基线为轴存在一个平面束,该平面束与两幅图像平面相交,下图给出了该平面束的直观形象,可以看到,该平面束中不同平面与两幅图像相交于不同直线;
    这里写图片描述
  • 上图中的灰色平面 π ,只是过基线的平面束中的一个平面(当然,该平面才是平面束中最重要的、也是我们要研究的平面);

2. 对极几何相关的一个重要约束·5点共面约束

仍以上面贴出的图像为例,此处重复贴出,空间点X在两幅图像中的像分别为x和x’,这两个投影点之间存在什么关系呢?观察下图
这里写图片描述

  • 点x、x’与摄像机中心C和C’是共面的,并且与空间点X也是空面的,这5个点共面于平面 π !这是一个最本质的约束,即5个点决定了一个平面 π
  • 由该约束,可以推导出一个重要性质:由图像点x和x’反投影的射线共面,并且,在平面 π ,在搜索点对应中,该性质非常重要

3. 对极几何的几个相关概念

  • 对极平面束(epipolar pencil):以基线为轴的平面束;下图给出了包含两个平面的对极平面束
    这里写图片描述

  • 对极平面(epipolar plane):任何包含基线的平面都称为对极平面,或者说是对极平面束中的平面;例如,下图中的平面 π 就是一个对极平面
    这里写图片描述

  • 对极点(epipole):摄像机的基线与每幅图像的交点;即上图中的点e和e’

  • 对极线(epipolar line):对极平面与图像的交线;例如,上图中的直线l和l’

4. 对应点的约束

现在假设只知道图像点x,那么,它的对应点x’如何约束呢?
这里写图片描述

  • 根据前面的讨论,点x和x’一定位于平面 π 上,而平面 π 可以利用基线CC’和图像点x的反投影射线确定
  • 点x’又是右侧图像平面上的点,所以,点x’一定位于平面 π 与右侧图像平面的交线l’上
  • 前面提到,直线l’为点x的对极线,也就是说,点x的对应点x’一定位于它的对极线上!

Reference
[1]《计算机视觉中的多视几何》 ·第八章·对极几何和基本矩阵
[2] 《Multiple View Geometry in Computer Vision Second Edition》·Andrew Zisserman·P239·9 Epipolar Geometry and the Fundamental Matrix

这篇关于对极几何基本概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890510

相关文章

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

poj 3304 几何

题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。 解题思路:如果存在这样的直线,过投影相交点(或投影相交区域中的点)作直线的垂线,该垂线(也是直线)必定与每条线段相交,问题转化为问是否存在一条直线和所有线段相交。 若存在一条直线与所有线段相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。

POJ 2318 几何 POJ 2398

给出0 , 1 , 2 ... n 个盒子, 和m个点, 统计每个盒子里面的点的个数。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y

poj 2653 几何

按顺序给一系列的线段,问最终哪些线段处在顶端(俯视图是完整的)。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y ;Point(){}Po

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

【Rocketmq入门-基本概念】

Rocketmq入门-基本概念 名词解释名称服务器(NameServer)消息队列(Message Queue)主题(Topic)标签(Tag)生产者(Producer)消费者(Consumer)拉取模式(Pull)推送模式(Push)消息模型(Message Model) 关键组件Broker消息存储工作流程 名词解释 名称服务器(NameServer) 定义: 名称服务器