Adaptive Filter Learning Notes 自适应滤波学习笔记03 自回归模型

本文主要是介绍Adaptive Filter Learning Notes 自适应滤波学习笔记03 自回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是一个学习笔记系列。为督促自己看书,尽量更新。但同时也在学其他东西,也不知道能不能实现。少玩耍,多读书。
IT的应用里面当然会用滤波知识啦
应该会慢慢改进,会慢慢补充每一个部分的笔记。

文章目录

  • Stochastic Progress and Models
    • 渐近平稳自适应模型
      • 渐近平稳自回归过程的互相关函数
    • Yule-Walker方程

Stochastic Progress and Models

渐近平稳自适应模型

回顾一下 M M M阶自适应模型 u ( n ) + a 1 ∗ u ( n − 1 ) + ⋯ + a M ∗ u ( n − M ) = ν ( n ) . u(n)+a_1^*u(n-1)+\dots+a_M^*u(n-M)=\nu(n). u(n)+a1u(n1)++aMu(nM)=ν(n).该系统的解可以表示为补充函数(complementary function) u c ( n ) u_c(n) uc(n)和特解(particular solution) u p ( n ) u_p(n) up(n)的和,即 u ( n ) = u c ( n ) + u p ( n ) u(n)=u_c(n)+u_p(n) u(n)=uc(n)+up(n)

  1. u c ( n ) u_c(n) uc(n)是齐次方程(homogeneous equation) u ( n ) + a 1 ∗ u ( n − 1 ) + ⋯ + a M ∗ u ( n − M ) = 0 u(n)+a_1^*u(n-1)+\dots+a_M^*u(n-M)=0 u(n)+a1u(n1)++aMu(nM)=0的解。一般地, u c ( n ) = B 1 p 1 n + B 2 p 2 n + ⋯ + B M p M n u_c(n)=B_1p_1^n+B_2p_2^n+\dots+B_Mp_M^n uc(n)=B1p1n+B2p2n++BMpMn B 1 , B 2 , … , B M B_1,B_2,\dots,B_M B1,B2,,BM是任意常数, p 1 , p 2 , … , p M p_1,p_2,\dots,p_M p1,p2,,p

这篇关于Adaptive Filter Learning Notes 自适应滤波学习笔记03 自回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890401

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G