【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列

本文主要是介绍【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

39. 组合总和

对每一个位置进行枚举

枚举每一个数出现的次数

784. 字母大小写全排列

526. 优美的排列

结尾


39. 组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。

candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。

对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:

 

输入:candidates = [2,3,6,7], target = 7输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。

示例 2:

 

输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

 

输入: candidates = [2], target = 1 输出: []

提示:

  • 1 <= candidates.length <= 30

  • 2 <= candidates[i] <= 40

  • candidates 的所有元素 互不相同

  • 1 <= target <= 40

对每一个位置进行枚举

定义节点信息,定义path存储路径,定义sum存储当前节点的数字和。这两个变量表示一个节点位置。

定义pos表示孩子节点从哪个下表位置开始枚举。223和322是同一种情况,也就是当排序好了的序列只会出现一次。因此子树每一次都是从根节点的数字开始枚举。这样保证枚举的情况都是非递减,也就保证的不重复。

定义ret存储结果序列。

递归出口,如果sum==aim,将path加入ret结果序列中,return。

剪枝,如果sum>aim,不需要再枚举,直接返回return。

递归遍历整个树。

对于每一棵树根节点,遍历整个树相当于遍历该节点所有的子树。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int sum = 0;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0);return ret;}void dfs(vector<int>& nums, int pos) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim)return;for (int i = pos; i < nums.size(); i++) {path.push_back(nums[i]);sum = sum + nums[i];dfs(nums, i);path.pop_back();sum = sum - nums[i];}}
};

将全局遍历int类型写到递归函数作为非引用参数,此时不需要再手动回溯,提高效率。

但是不将vector类型写到递归函数作为非引用参数,因为每一次都需要开辟vector的空间,效率反而可能下降。

但是每次开辟int类型的空间,效率影响比较小。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0, 0);return ret;}void dfs(vector<int>& nums, int pos, int sum) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim)return;for (int i = pos; i < nums.size(); i++) {path.push_back(nums[i]);dfs(nums, i, sum + nums[i]);path.pop_back();}}
};

枚举每一个数出现的次数

这种情况的剪枝操作多了一个,就是当pos孩子枚举的位置是nums.size(),此时不需要再继续下去了。

 
class Solution {
public:vector<vector<int>> ret;vector<int> path;int aim;vector<vector<int>> combinationSum(vector<int>& nums, int target) {aim = target;dfs(nums, 0, 0);return ret;}void dfs(vector<int>& nums, int pos, int sum) {if (sum == aim) {ret.push_back(path);return;}if (sum > aim || nums.size() == pos)return;for (int i = 0; i * nums[pos] <= aim; i++) {if (i)path.push_back(nums[pos]);dfs(nums, pos + 1, sum + i * nums[pos]);}for (int i = 1; i * nums[pos] <= aim; i++)path.pop_back();}
};

784. 字母大小写全排列

给定一个字符串 s ,通过将字符串 s 中的每个字母转变大小写,我们可以获得一个新的字符串。

返回 所有可能得到的字符串集合 。以 任意顺序 返回输出。

示例 1:

输入:s = "a1b2" 输出:["a1b2", "a1B2", "A1b2", "A1B2"]

示例 2:

输入: s = "3z4" 输出: ["3z4","3Z4"]

提示:

  • 1 <= s.length <= 12

  • s 由小写英文字母、大写英文字母和数字组成

定义path表示节点的序列。

定义pos表示下一个可能出现的字符,也就是对应孩子节点的选取。

递归函数遍历整个树。

递归出口,path.size()==s.size()。

 
class Solution {
public:vector<string> ret;string path;vector<string> letterCasePermutation(string s) {dfs(s, 0);return ret;}void dfs(string& s, int pos) {if (path.size() == s.size()) {ret.push_back(path);return;}// 变if (s[pos] > '9' || s[pos] < '0') {path.push_back(change(s[pos]));dfs(s, pos + 1);path.pop_back();}// 不变path.push_back(s[pos]);dfs(s, pos + 1);path.pop_back();}char change(char& ch) {if (ch <= 'z' && ch >= 'a')return ch - 32;elsereturn ch + 32;}
};

526. 优美的排列

假设有从 1 到 n 的 n 个整数。用这些整数构造一个数组 perm下标从 1 开始),只要满足下述条件 之一 ,该数组就是一个 优美的排列

  • perm[i] 能够被 i 整除

  • i 能够被 perm[i] 整除

给你一个整数 n ,返回可以构造的 优美排列 数量

示例 1:

输入:n = 2 输出:2 解释: 第 1 个优美的排列是 [1,2]: - perm[1] = 1 能被 i = 1 整除 - perm[2] = 2 能被 i = 2 整除 第 2 个优美的排列是 [2,1]: - perm[1] = 2 能被 i = 1 整除 - i = 2 能被 perm[2] = 1 整除

示例 2:

输入:n = 1 输出:1

提示:

  • 1 <= n <= 15

定义ret存储结果个数。

定义check存储当前节点之前已经使用的数字。

定义pos表示孩子节点枚举的位置。

每一个节点都需要维护这一节点的定义。也就是回溯。

 
class Solution {
public:int ret;vector<bool> check;int countArrangement(int n) {check.resize(16);dfs(1, n);return ret;}void dfs(int pos, int n) {if (pos == n + 1) {ret++;return;}for (int i = 1; i <= n; i++) {if (!check[i] && (i % pos == 0 || pos % i == 0)) {check[i] = true;dfs(pos + 1, n);check[i] = false;}}}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【三十六】【算法分析与设计】综合练习(3),39. 组合总和,784. 字母大小写全排列,526. 优美的排列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889559

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异