【力扣一刷】代码随想录day32(贪心算法part2:122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II )

本文主要是介绍【力扣一刷】代码随想录day32(贪心算法part2:122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【122.买卖股票的最佳时机II】中等题

方法一  贪心算法

方法二  动态规划

【55. 跳跃游戏】中等题

【尝试】 递归 (超时)

方法  贪心算法

【45.跳跃游戏II】中等题

方法  贪心算法


【122.买卖股票的最佳时机II】中等题(偏简单)

方法一  贪心算法

思路:

1、局部最优:截止到当天能赚到的最大利润

2、全局最优:截止到最后一天能赚到的最大利润就是全局最大利润

例子:上升就是赚钱机会,贪心地将每个赚钱机会把握住,获取赚到的钱的总和即可

class Solution {public int maxProfit(int[] prices) {int res = 0;for (int i = 0; i < prices.length - 1; i++){int delta = prices[i + 1] - prices[i];if (delta > 0) res += delta; // 贪心算法,不放过截止到现在的所有赚钱机会}return res;}
}
  • 时间复杂度: O(n),for循环遍历一次数组
  • 空间复杂度: O(1),没有额外的空间开销

方法二  动态规划

思路:

1、确定dp[i]的含义:截止到第i天赚到的最多的钱

2、确定递推关系:dp[i] = dp[i-1] + today

3、确定初始值:第一天赚到的最多的钱肯定是0,即dp[0] = 0

class Solution {public int maxProfit(int[] prices) {int dp = 0;for (int i = 1; i < prices.length; i++){// 今天之前赚到的最多的钱 + 今天当天赚到最多的钱 = 包括今天在内已经赚到的最多的钱int today = prices[i] - prices[i-1] > 0 ? prices[i] - prices[i-1] : 0;dp += today;}return dp;}
}
  • 时间复杂度: O(n),for循环遍历一次数组
  • 空间复杂度: O(1),dp[i]只与dp[i-1]有关,只用一个变量记录值即可


【55. 跳跃游戏】中等题

【尝试】 递归 (超时)

思路:

1、确定参数和返回值:传入数组和起跳索引作为参数,返回值为起跳索引能否到达最后一个索引的判断结果。

2、确定终止条件:当起跳索引为最后一个索引时,证明能够到达最后一个下标,返回true

3、确定单层递归逻辑:先获取当前起跳索引 start 能跳到的范围,一般是 [start + 1, start + nums[start]]。只需要遍历这个范围,如果这个范围内存在能否到达最后一个索引的索引即可返回true;for遍历结束后,在这个范围内的索引都无法到达最后一个索引,则该起跳索引无法到达最后一个索引,返回false。 

class Solution {public boolean canJump(int[] nums) {return canJumpToEnd(nums, 0);}public boolean canJumpToEnd(int[] nums, int start){// 起跳索引到达最后一个索引if (start == nums.length - 1) return true;// 计算起跳索引能到达的索引范围,如果索引范围超过数组的可索引范围,则取数组最大索引int longest = Math.min(start + nums[start], nums.length - 1);// for循环遍历每个start可到达的索引,如果有一个索引能到达最后一个索引就返回truefor (int i = start + 1; i <= longest; i++){if (canJumpToEnd(nums, i)) return true;}// for遍历完之后都到不了,则说明该索引无法到达最后一个索引,返回falsereturn false;}
}

方法  贪心算法

思路:

1、局部最优即获取遍历到的索引的最大覆盖范围,全局最优即遍历到最后相当于获取所有索引的最大覆盖范围,只要判断全局覆盖范围是否包含最后一个索引即可。

2、for循环遍历最大覆盖范围,每遍历一个索引就更新一次最大覆盖范围,判断最大覆盖范围是否包含了最后一个索引,是则返回true;

3、如果在最大覆盖范围内的索引都遍历完了也到达不了最后一个索引,则返回false

class Solution {public boolean canJump(int[] nums) {int longest = 0;for (int i = 0; i <= longest; i++){longest = Math.max(longest, i + nums[i]); // 更新最大覆盖范围if (longest >= nums.length - 1){  // 如果能到达最后一个索引,则返回true,还可以避免数组索引越界return true;}}return false; // 如果在最大覆盖范围内的索引都遍历完了也到达不了最后一个索引,则返回false}
}
  • 时间复杂度: O(n),for循环遍历一次数组
  • 空间复杂度: O(1)


【45.跳跃游戏II】中等题(偏难)

方法  贪心算法

思路:

1、贪心策略:每跳一步,就贪心地获取这一步能到达的最远处,如果最远处超过最后一个索引,则一共所跳的次数就是最少的次数。

2、关键:如何获取每跳一步能到达的最远处?

例子:[2,3,1,2,4,2,3]      结果:3

  • 第①次跳,只能从 i = 0 处开始跳,所以第①次跳能到达的最远处为 i = 2,最远处还没越过最后一个索引。
  • 第②次跳,如果从 i = 1 处开始跳,能到达的最远处为 i = 4;如果从 i = 2 处开始跳,能到达的最远处为 i = 3;所以综合来看,第②次跳能到达的最远处为 i = 4,最远处还没越过最后一个索引。
  • 第③次跳,如果从 i = 3 处开始跳,能到达的最远处为 i = 5;如果从 i = 4 处开始跳,能到达的最远处为 i = 8;所以综合来看,第③次跳能到达的最远处为 i = 8,已经越过了最后一个索引 i = 6。

3、步骤分析:

  • 获取当前能到达的最远处。

  • 判断当前能到达的最远处是否能到达最后一个索引,如果计算完下一跳的边界前(或到达当前跳的边界前)就已经能到达最后一个索引,则还需要再跳一次再返回结果。

  • 如果上一跳能跳到的位置已经遍历完了(到达上一轮的边界时),则开启新一跳,次数+1,并设置新一跳的边界。

class Solution {public int jump(int[] nums) {int longest = 0;  // 用于记录已经遍历过的索引能到达的最远处int end = 0;  // 用于记录上一跳的边界/能到达的最远处int cnt = 0;  // 用于记录所跳的次数 for (int i = 0; i < nums.length - 1; i++){// 获取当前能到达的最远处longest = Math.max(longest, i + nums[i]);// 判断当前能到达的最远处是否能到达最后一个索引if (longest >= nums.length - 1){cnt++; // 如果计算完下一跳的边界前就已经能到达最后一个索引,则还需要再跳一次再返回结果break;}// 如果上一跳能跳到的位置已经遍历完了(到达上一轮的边界),则开启新一跳并设置新一跳的边界if (i == end){cnt++; // 开启新一跳,次数+1end = longest;  // 更新新一跳能到达的最远处/边界}}return cnt;}
}
  • 时间复杂度: O(n),for循环遍历一次数组
  • 空间复杂度: O(1)

这篇关于【力扣一刷】代码随想录day32(贪心算法part2:122.买卖股票的最佳时机II、55. 跳跃游戏、45.跳跃游戏II )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887748

相关文章

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个