自然语言处理: 第二十三章大模型基底之Mistral 7B

2024-04-08 16:28

本文主要是介绍自然语言处理: 第二十三章大模型基底之Mistral 7B,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章地址: 2401.04088.pdf (arxiv.org)

项目地址: mistralai/mistral-src: Reference implementation of Mistral AI 7B v0.1 model



前言

Mistral 7B作为Mistral AI公司推出的第一个基座大模型,也有很多地方借鉴了LLaMa2的闪光点也采用了GQA(分组查询注意力) 以及RoPE(旋转位置编码)–(目前似乎是标配了)。在此基础上,为了踩在LLaMa2的肩膀上更进一步,Mistral AI 使用了SWA(滑动窗口注意力机制)进一步解决了长本文的问题,如图1所示Mistral 7B的文本长度已经达到了32K(LLaMa2只有4K).

在这里插入图片描述

图1. Mistral 7B 模型参数


基于上面这些改进,作者将Mistral7B与LLaMa各个参数的版本进行了对比,其结果如图2所示。可以看到: Mistral 7B在所有指标上均超过了Llama 2 13B,并在大多数基准测试中优于Llama 1 34B。特别是,Mistral 7B在代码、数学和推理基准测试中表现出卓越的性能,并在不牺牲非代码基准测试性能的情况下接近Code-Llama 7B的代码性能。

在这里插入图片描述

图2. Mistral 7B和不同Llama模型在各种基准测试上的性能





### 核心一. 滑动窗口注意力SWA(slide window attention)

在这里插入图片描述

图4 基础自注意力以及滑动窗口注意力对比

滑动窗口注意力SWA是Mistral 7B 相比于LLaMa系列最突出的创新点,其主要解决了长文本问题。熟悉attention机制的都知道,如图在计算vanilla attention的时候都会计算整个生成句子的每个token的注意力值,但是对于长文本来说大部分情况应当是离的越近会更大概率更相关, 所以理论上并不需要算所有token的注意力值。 基于此SWA就提出来了,以图4.中的例子为例:

在面对这个序列时:The cat sat on the。

如果是标准注意力,在计算最后一个token “the”时,得计算the本身所对应的query与整个上文每个token对应的key的内积即需要计算5个注意力,当序列长度一长时,该计算量还是比较大的。

但如果是滑动窗口注意力,则在计算最后一个token “the”时,只需计算the本身所对应的query与上文中N(N是窗口长度)个token对应的key的内积 。

可以看到SWA的确减少了很多运算,但是每个token只关注前面的N个token的注意力的话,精度会不会损失? 这个问题其实作者在原文中也给出了解释,如图4所示: 只要transformer层够深,即使窗口大小仅仅为4,通过这种4层的transformer结构,我同样能看到最远的4 * 4= 16tokens的长度范围。所以精度损失并不是很大。

我们知道在LLM推理时,一般分为prompting 和 generation两个阶段,为了满足SWA,prompting阶段可以通过一个mask的掩码操作实现,如下

if input_ids.shape[1] > 1:# seqlen推理时在prompt阶段为n,在generation阶段为1seqlen = input_ids.shape[1]# mask在推理时也只在prompt阶段有,#定义一个全1方阵tensor = torch.full((seqlen, seqlen),fill_value=1)# 上三角部分全为0mask = torch.tril(tensor, diagonal=0).to(h.dtype)# make the mask banded to account for sliding window# 这里代码diagonal应该等于(-self.args.sliding_window+1)才能满足window size为  # self.args.sliding_window,这应该是官方代码的一个小bug?mask = torch.triu(mask, diagonal=-self.args.sliding_window)mask = torch.log(mask)
"""
举个例子,tensor.shape : [10,10]
self.args.sliding_window = 5,则mask为
tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 0, 0, 0, 0],[0, 1, 1, 1, 1, 1, 1, 0, 0, 0],[0, 0, 1, 1, 1, 1, 1, 1, 0, 0],[0, 0, 0, 1, 1, 1, 1, 1, 1, 0],[0, 0, 0, 0, 1, 1, 1, 1, 1, 1]])
"""

而在generation阶段,因为是自回归生成所以mask起不到作用,那此时mistral则使用了RotatingBufferCache来实现此操作,具体而言,就是采用一种循环右移的存储方式,剔除离得远的K,保存靠近的K 。
在这里插入图片描述
如上图展示了一个Window Size为4的Cache,循环右移的写Cache的示意图。

RotatingBufferCache代码实现如下

# The cache is a rotating buffer
# positions[-self.sliding_window:] 取最后w个位置的索引,取余
# [None, :, None, None]操作用于扩维度[1,w,1,1]
scatter_pos = (positions[-self.sliding_window:] % self.sliding_window)[None, :, None, None]
# repeat操作repeat维度 [bsz, w, kv_head, head_dim]
scatter_pos = scatter_pos.repeat(bsz, 1, self.n_kv_heads, self.args.head_dim)
# src取[:,-w,:,:] 所以src.shape=[bsz,w,kv_head,head_dim]
# 根据scatter_pos作为index 将src写入cache
self.cache_k[:bsz].scatter_(dim=1, index=scatter_pos, src=xk[:, -self.sliding_window:])
self.cache_v[:bsz].scatter_(dim=1, index=scatter_pos, src=xv[:, -self.sliding_window:])




核心二. 分组查询注意力GQA(Grouped-query attetion)

如图2所示,除了常见的一些参数之外,我们可以发现一个n_kv_heads,那么这个是啥呢?其实与LLaMa2一样,Mistral 7B 同样使用了GQA分组查询注意力。其中n_heads =32共计32个头,n_kv_heads=8,说明每组kv共享4组query。这么说好像还是有点不理解,别着急听笔者细细道来。

原始的 MHA(Multi-Head Attention,QKV 三部分有相同数量的头,且一一对应。每次做 Attention,head1 的 QKV 就做好自己运算就可以,输出时各个头加起来就行。而 MQA(Multi-query Attention) 则是,让 Q 仍然保持原来的头数,但 KV只有一个,相当于所有的 Q 头共享一组 K 和 V 头,所以叫做 Multi-Query 了,这是LLaMa1采用的原理。而显而易见的这样虽然会提高速度,但是由于共享KV所以精度会下降很多,从而到了LLaMa2和Mistral里,GQA 通过分组一定头数共享一组KV,从而达到性能和计算中的一个trade-off,这样既不像MQA一样降低很多精度,也可以相比于NHA提高速度。(有关于GQA的具体细节可以参考上一篇文章:自然语言处理: 第二十一章大模型基底之llama2 )


前文的谜底揭晓:说明在Mistral 的GQA中,一组KV共享4组Q。

在这里插入图片描述

图5.MHA & GQA & MQA 机理



核心三. RoPE(旋转位置编码)

最后同样的,Mistral也同样配备了RoPE旋转位置编码–其核心思想是“通过绝对位置编码的方式实现相对位置编码”,这一构思具备了绝对位置编码的方便性,同时可以表示不同 token 之间的相对位置关系。如图6是RoPE旋转位置编码的机理图解,不同于原始 Transformers 中将 pos embedding 和 token embedding 进行相加,RoPE 是将位置编码和 query (或者 key) 进行相乘。

具体来说,在对序列进行位置编码时和标准Transformer不同,LlaMa 的位置编码在每个Attention层中分别对Q K 进行RoPE位置编码,而不是在Transformer Block之前进行一次位置编码,也就是说每次计算Attention时都分别要对Q和 K做位置编码。

在这里插入图片描述

图6. RoPE机理图解

这篇关于自然语言处理: 第二十三章大模型基底之Mistral 7B的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886083

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者