【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理

2024-04-07 23:52

本文主要是介绍【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Prompt-aligned Gradient for Prompt Tuning(CORR2022 / ICCV2023)

1 Motivation

在这里插入图片描述

在这里插入图片描述

  • 经过CoOp微调过的prompt会导致模型更关注背景而不是前景对象,对于分类任务不利

2 Contribution

在这里插入图片描述
提出了一种基于prompt对齐的梯度的引导方法(ProGrad),来应对prompt学习中添加的不正确偏置的问题。在tuning的过程中进行一种正则化,来确保这一步的tuning不和原本的知识(zero-shot CLIP)产生冲突。

  • 一般方向(general direction):zero-shot CLIP
  • 域特殊方向(domain-specific direction):CoOp计算得出
    • 垂直向量 G ⊥ G_⊥ G
    • 平行向量 G ∥ G_∥ G

3 具体方法

由CoOp进行学习的域特殊方向,加强其在当前数据下的精度的优化方向,但是这可能导致过拟合。用一个一般普通的prompt和zero-shot CLIP的logits计算一个KL散度,这个KL散度回传的梯度作为一般方向。

3.1 交叉熵损失

在这里插入图片描述
L c e L_{ce} Lce:模型预测 p ( t i ∣ x ) p(t_i|x) p(tix)真实值 y y y的交叉熵损失

3.2 KL散度

在这里插入图片描述

L k l L_{kl} Lkl:模型预测 p ( t i ∣ x ) p(t_i|x) p(tix)zero-shot CLIP预测 p z s ( w i ∣ x ) p_{zs}(w_i|x) pzs(wix)的KL散度

3.3 梯度

  • L c e L_{ce} Lce的梯度表示为 G d = ∇ v L c e ( v ) G_d =∇_vL_{ce}(v) Gd=vLce(v)
  • L k l L_{kl} Lkl的梯度表示为 G g = ∇ v L k l ( v ) G_g =∇_vL_{kl}(v) Gg=vLkl(v)

在这里插入图片描述

G d G_d Gd G g G_g Gg的关系:

  • 夹角小于90°:说明下游知识优化方向与一般知识不冲突,此时安全地更新梯度 G p r o g r a d G_{prograd} Gprograd作为 G d G_d Gd
  • 夹角大于90°:说明下游知识优化方向与一般知识冲突,此时,将 G d G_d Gd投影 G g G_g Gg正交方向,避免增加 L k l L_{kl} Lkl

3.4 ProGrad策略公式

在这里插入图片描述
在本文CoOp中,我们没有使用 G d G_d Gd来更新上下文向量,而是使用 G p r o g r a d G_{prograd} Gprograd来优化,可以避免过拟合:

  • λ=1:将 G d G_d Gd投影到 G g G_g Gg的正交方向
  • λ=0:使prograd退化为CoOp

3.5 总体流程

在这里插入图片描述

  • 可学习上下文和类别输入文本编码器,图像输入图像编码器
  • 将文本特征与图像特征计算相似概率,得到 p p p
  • p p p y y y计算 C E L o s s CE Loss CELoss,得到 G d G_d Gd
  • p p p p z s p_{zs} pzs计算 K L L o s s KL Loss KLLoss,得到 G g G_g Gg
  • G d G_d Gd G g G_g Gg反传回去,使用 G p r o g r a d G_{prograd} Gprograd更新可学习参数

这篇关于【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884021

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Mybatis提示Tag name expected的问题及解决

《Mybatis提示Tagnameexpected的问题及解决》MyBatis是一个开源的Java持久层框架,用于将Java对象与数据库表进行映射,它提供了一种简单、灵活的方式来访问数据库,同时也... 目录概念说明MyBATis特点发现问题解决问题第一种方式第二种方式问题总结概念说明MyBatis(原名

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

提示:Decompiled.class file,bytecode version如何解决

《提示:Decompiled.classfile,bytecodeversion如何解决》在处理Decompiled.classfile和bytecodeversion问题时,通过修改Maven配... 目录问题原因总结问题1、提示:Decompiled .class file,China编程 bytecode

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06