深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播

本文主要是介绍深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先是前向传播的程序。为了更清晰我们分段讲解。

第一部分导入模块,并设置输入节点为28*28,输出节点为10(0到9共10个数字),第一层的节点为500(随便设的)

import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

然后是生成单个层次网络的结构,判断损失函数是否加入正则

#定义神经网络的输入,参数和输出,定义前向传播过程
def get_weight(shape,regularizer):w = tf.Variable(tf.random_normal(shape,stddev=0.1),dtype=tf.float32) #生成随机参数if regularizer != None:tf.add_to_collection('losses',tf.contrib.layers.l2_regularizer(regularizer)(w))return w

同时设置偏置项,偏置项不需要正则化。

def get_bias(shape):b = tf.Variable(tf.constant(0.01,shape=shape))return b

在总的前向传播网络中设置两层网络:

def forward(x,regularizer):w1 = get_weight([INPUT_NODE,LAYER1_NODE],regularizer)b1 = get_bias([LAYER1_NODE])y1 = tf.nn.relu(tf.matmul(x,w1)+b1)w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)b2 = get_bias([OUTPUT_NODE])y = tf.matmul(y1, w2) + b2return y

然后反向传播。这里实现了一种机制:每次训练前,先查看一下已有的模型,

首先仍然是加载模型和设置初始常量:正则系数为0.0001,不算很大。然后滑动平均值衰减设为0.99.

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward2
import osBATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001STEPS = 50000MOVING_AVERAGE_DECAY = 0.99MODEL_SAVE_PATH="./model/" #模型保存路径
MODEL_NAME="mnist_model" #模型保存文件名

然后是反向传播函数  def backward(mnist) :

输入数据和输出占位就先不说了,这里提一下损失函数:

采用最后输出为softmax的网络激活函数,并把损失函数定义为交叉熵

    #定义损失函数ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=tf.argmax(y_,1))cem = tf.reduce_mean(ce)loss = cem + tf.add_n(tf.get_collection('losses'))

学习率的设置方法和以前一样,然后定义反向传播方法,并设置和启用滑动平均值。

之后我们使用保存模型的函数:

    saver = tf.train.Saver()

在会话中我们先查看模型目录下有没有训练好的模型和参数,如果有,就恢复:

    with tf.Session() as sess:ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)if ckpt and ckpt.model_checkpoint_path:  # 先判断是否有模型saver.restore(sess, ckpt.model_checkpoint_path)  # 恢复模型到当前会话#可以观察到当前的会话已经包含当前的正确globalstep了currentstep = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]print(currentstep)

值得注意的是,我们之前在当前的模型里使用了滑动平均值,这里恢复的时候恢复了滑动平均后的数据,然后继续根据global_step来计算新的滑动平均值。而且,因为在模型中我们嵌入了global_step,所以恢复的时候,global_step也被恢复了。

然后开始训练。

        for i in range(STEPS):xs,ys = mnist.train.next_batch(BATCH_SIZE)_,loss_value,step = sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})if i % 1000 == 0:print("After " + str(i) + " steps, loss is: " + str(loss_value))saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)

设置自动执行的函数main() :

def main():mnist = input_data.read_data_sets("./data/",one_hot=True)backward(mnist)if __name__ == '__main__':main()

现在前向传播和后向传播都已经设置好了。大家多运行几次,就会发现每次都是从上一次训练好的模型中开始然后继续训练的。

这篇关于深度学习神经网络 MNIST手写数据辨识 1 前向传播和反向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883656

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS