机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例

本文主要是介绍机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例

随机森林回归 (Random Forest Regression):

任务类型: 随机森林回归主要用于回归任务。在回归任务中, 算法试图预测一个连续的数值输出, 而不是一个离散的类别。

输出: 随机森林回归的输出是一个连续的数值, 表示输入数据的预测结果。

算法原理: 随机森林回归同样基于决策树, 但在回归任务中, 每个决策树的输出是一个实数值。最终的预测结果是多个决策树输出的平均值或加权平均值。

在 PySpark-3.x.x 中构建随机森林回归主要使用 pyspark.ml 模块中的 RandomForestRegressor。

下面是一个简单的示例, 演示如何使用 PySpark-3.x.x 构建和训练随机森林回归模型。

实例数据

本实例是于 2023年12月30日 截取了 “Iris_Dataset (鸢尾花数据集)” 中的120条样本数据。

字段说明: SepalLength(花萼长度), SepalWidth(花萼宽度), PetalLength(花瓣长度), PetalWidth(花瓣宽度), Species(品种).

品种说明: Setosa(山鸢尾), Versicolor(变色鸢尾), Virginical(维吉尼亚鸢尾).

Iris_Dataset_120_2023-12-30.csv

SepalLength,SepalWidth,PetalLength,PetalWidth,Species
6.4,2.8,5.6,2.2,Virginical
5.0,2.3,3.3,1.0,Versicolor
4.9,2.5,4.5,1.7,Virginical
4.9,3.1,1.5,0.1,Setosa
5.7,3.8,1.7,0.3,Setosa
4.4,3.2,1.3,0.2,Setosa
5.4,3.4,1.5,0.4,Setosa
6.9,3.1,5.1,2.3,Virginical
6.7,3.1,4.4,1.4,Versicolor
5.1,3.7,1.5,0.4,Setosa
5.2,2.7,3.9,1.4,Versicolor
6.9,3.1,4.9,1.5,Versicolor
5.8,4.0,1.2,0.2,Setosa
5.4,3.9,1.7,0.4,Setosa
7.7,3.8,6.7,2.2,Virginical
6.3,3.3,4.7,1.6,Versicolor
6.8,3.2,5.9,2.3,Virginical
7.6,3.0,6.6,2.1,Virginical
6.4,3.2,5.3,2.3,Virginical
5.7,4.4,1.5,0.4,Setosa
6.7,3.3,5.7,2.1,Virginical
6.4,2.8,5.6,2.1,Virginical
5.4,3.9,1.3,0.4,Setosa
6.1,2.6,5.6,1.4,Virginical
7.2,3.0,5.8,1.6,Virginical
5.2,3.5,1.5,0.2,Setosa
5.8,2.6,4.0,1.2,Versicolor
5.9,3.0,5.1,1.8,Virginical
5.4,3.0,4.5,1.5,Versicolor
6.7,3.0,5.0,1.7,Versicolor
6.3,2.3,4.4,1.3,Versicolor
5.1,2.5,3.0,1.1,Versicolor
6.4,3.2,4.5,1.5,Versicolor
6.8,3.0,5.5,2.1,Virginical
6.2,2.8,4.8,1.8,Virginical
6.9,3.2,5.7,2.3,Virginical
6.5,3.2,5.1,2.0,Virginical
5.8,2.8,5.1,2.4,Virginical
5.1,3.8,1.5,0.3,Setosa
4.8,3.0,1.4,0.3,Setosa
7.9,3.8,6.4,2.0,Virginical
5.8,2.7,5.1,1.9,Virginical
6.7,3.0,5.2,2.3,Virginical
5.1,3.8,1.9,0.4,Setosa
4.7,3.2,1.6,0.2,Setosa
6.0,2.2,5.0,1.5,Virginical
4.8,3.4,1.6,0.2,Setosa
7.7,2.6,6.9,2.3,Virginical
4.6,3.6,1.0,0.2,Setosa
7.2,3.2,6.0,1.8,Virginical
5.0,3.3,1.4,0.2,Setosa
6.6,3.0,4.4,1.4,Versicolor
6.1,2.8,4.0,1.3,Versicolor
5.0,3.2,1.2,0.2,Setosa
7.0,3.2,4.7,1.4,Versicolor
6.0,3.0,4.8,1.8,Virginical
7.4,2.8,6.1,1.9,Virginical
5.8,2.7,5.1,1.9,Virginical
6.2,3.4,5.4,2.3,Virginical
5.0,2.0,3.5,1.0,Versicolor
5.6,2.5,3.9,1.1,Versicolor
6.7,3.1,5.6,2.4,Virginical
6.3,2.5,5.0,1.9,Virginical
6.4,3.1,5.5,1.8,Virginical
6.2,2.2,4.5,1.5,Versicolor
7.3,2.9,6.3,1.8,Virginical
4.4,3.0,1.3,0.2,Setosa
7.2,3.6,6.1,2.5,Virginical
6.5,3.0,5.5,1.8,Virginical
5.0,3.4,1.5,0.2,Setosa
4.7,3.2,1.3,0.2,Setosa
6.6,2.9,4.6,1.3,Versicolor
5.5,3.5,1.3,0.2,Setosa
7.7,3.0,6.1,2.3,Virginical
6.1,3.0,4.9,1.8,Virginical
4.9,3.1,1.5,0.1,Setosa
5.5,2.4,3.8,1.1,Versicolor
5.7,2.9,4.2,1.3,Versicolor
6.0,2.9,4.5,1.5,Versicolor
6.4,2.7,5.3,1.9,Virginical
5.4,3.7,1.5,0.2,Setosa
6.1,2.9,4.7,1.4,Versicolor
6.5,2.8,4.6,1.5,Versicolor
5.6,2.7,4.2,1.3,Versicolor
6.3,3.4,5.6,2.4,Virginical
4.9,3.1,1.5,0.1,Setosa
6.8,2.8,4.8,1.4,Versicolor
5.7,2.8,4.5,1.3,Versicolor
6.0,2.7,5.1,1.6,Versicolor
5.0,3.5,1.3,0.3,Setosa
6.5,3.0,5.2,2.0,Virginical
6.1,2.8,4.7,1.2,Versicolor
5.1,3.5,1.4,0.3,Setosa
4.6,3.1,1.5,0.2,Setosa
6.5,3.0,5.8,2.2,Virginical
4.6,3.4,1.4,0.3,Setosa
4.6,3.2,1.4,0.2,Setosa
7.7,2.8,6.7,2.0,Virginical
5.9,3.2,4.8,1.8,Versicolor
5.1,3.8,1.6,0.2,Setosa
4.9,3.0,1.4,0.2,Setosa
4.9,2.4,3.3,1.0,Versicolor
4.5,2.3,1.3,0.3,Setosa
5.8,2.7,4.1,1.0,Versicolor
5.0,3.4,1.6,0.4,Setosa
5.2,3.4,1.4,0.2,Setosa
5.3,3.7,1.5,0.2,Setosa
5.0,3.6,1.4,0.2,Setosa
5.6,2.9,3.6,1.3,Versicolor
4.8,3.1,1.6,0.2,Setosa
6.3,2.7,4.9,1.8,Virginical
5.7,2.8,4.1,1.3,Versicolor
5.0,3.0,1.6,0.2,Setosa
6.3,3.3,6.0,2.5,Virginical
5.0,3.5,1.6,0.6,Setosa
5.5,2.6,4.4,1.2,Versicolor
5.7,3.0,4.2,1.2,Versicolor
4.4,2.9,1.4,0.2,Setosa
4.8,3.0,1.4,0.1,Setosa
5.5,2.4,3.7,1.0,Versicolor

探索思路

这里只是简单示例, 目的在于熟悉 Spark 中的随机森林回归使用方法, 无任何投资引导。

目标:

通过 SepalLength(花萼长度), SepalWidth(花萼宽度), PetalLength(花瓣长度), PetalWidth(花瓣宽度) 预测 Iris(鸢尾花)Species(品种)

标签:

由于 Iris(鸢尾花)Species(品种)字符串(String) 的形式, 本例将使用 pyspark.mlStringIndexer 模块将 Iris(鸢尾花)Species(品种) 索引化。

导入 pyspark.sql 相关模块

Spark SQL 是用于结构化数据处理的 Spark 模块。它提供了一种成为 DataFrame 编程抽象, 是由 SchemaRDD 发展而来。

不同于 SchemaRDD 直接继承 RDD, DataFrame 自己实现了 RDD 的绝大多数功能。

from pyspark.sql import Row, SparkSession
from pyspark.sql.functions import col
from pyspark.sql.types import StringType, DoubleType

导入 pyspark.ml 相关模块

Spark 在核心数据抽象 RDD 的基础上, 支持 4 大组件, 其中机器学习占其一。

进一步的, Spark 中实际上支持两个机器学习模块, MLlib 和 ML, 区别在于前者主要是基于 RDD 数据结构, 当前处于维护状态; 而后者则是 DataFrame 数据结构, 支持更多的算法, 后续将以此为主进行迭代。

所以, 在实际应用中优先使用 ML 子模块。

Spark 的 ML 库与 Python 中的另一大机器学习库 Sklearn 的关系是: Spark 的 ML 库支持大部分机器学习算法和接口功能, 虽远不如 Sklearn 功能全面, 但主要面向分布式训练, 针对大数据。

而 Sklearn 是单点机器学习算法库, 支持几乎所有主流的机器学习算法, 从样例数据, 特征选择, 模型选择和验证, 基础学习算法和集成学习算法, 提供了机器学习一站式解决方案, 但仅支持并行而不支持分布式。

from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator

创建 SparkSession 对象

Spark 2.0 以上版本的 spark-shell 在启动时会自动创建一个名为 spark 的 SparkSession 对象。

当需要手工创建时, SparkSession 可以由其伴生对象的 builder 方法创建出来。

spark = SparkSession.builder.master("local[*]").appName("spark").getOrCreate()

使用 Spark 构建 DataFrame 数据 (Optional)

当数据量较小时, 可以使用该方法手工构建 DataFrame 数据。

构建数据行 Row (以前 5 行为例):

Row(SepalLength=6.4, SepalWidth=2.8, PetalLength=5.6, PetalWidth=2.2, Species="Virginical")
Row(SepalLength=5.0, SepalWidth=2.3, PetalLength=3.3, PetalWidth=1.0, Species="Versicolor")
Row(SepalLength=4.9, SepalWidth=2.5, PetalLength=4.5, PetalWidth=1.7, Species="Virginical")
Row(SepalLength=4.9, SepalWidth=3.1, PetalLength=1.5, PetalWidth=0.1, Species="Setosa")
Row(SepalLength=5.7, SepalWidth=3.8, PetalLength=1.7, PetalWidth=0.3, Species="Setosa")

将构建好的数据行 Row 加入列表 (以前 5 行为例):

Data_Rows = [Row(SepalLength=6.4, SepalWidth=2.8, PetalLength=5.6, PetalWidth=2.2, Species="Virginical"),Row(SepalLength=5.0, SepalWidth=2.3, PetalLength=3.3, PetalWidth=1.0, Species="Versicolor"),Row(SepalLength=4.9, SepalWidth=2.5, PetalLength=4.5, PetalWidth=1.7, Species="Virginical"),Row(SepalLength=4.9, SepalWidth=3.1, PetalLength=1.5, PetalWidth=0.1, Species="Setosa"),Row(SepalLength=5.7, SepalWidth=3.8, PetalLength=1.7, PetalWidth=0.3, Species="Setosa")
]

生成 DataFrame 数据框 (以前 5 行为例):

SDF = spark.createDataFrame(data=Data_Rows)

输出 DataFrame 数据框 (以前 5 行为例):

print("[Message] Builded Spark DataFrame:")
SDF.show(3)

输出:

[Message] Builded Spark DataFrame:
+-----------+----------+-----------+----------+----------+
|SepalLength|SepalWidth|PetalLength|PetalWidth|   Species|
+-----------+----------+-----------+----------+----------+
|        6.4|       2.8|        5.6|       2.2|Virginical|
|        5.0|       2.3|        3.3|       1.0|Versicolor|
|        4.9|       2.5|        4.5|       1.7|Virginical|
|        4.9|       3.1|        1.5|       0.1|    Setosa|
|        5.7|       3.8|        1.7|       0.3|    Setosa|
+-----------+----------+-----------+----------+----------+
only showing top 3 rows

使用 Spark 读取 CSV 数据

调用 SparkSession 的 .read 方法读取 CSV 数据:

其中 .option 是读取文件时的选项, 左边是 “键(Key)”, 右边是 “值(Value)”, 例如 .option(“header”, “true”) 与 {header = “true”} 类同。

SDF = spark.read.option("header", "true").option("encoding", "utf-8").csv("file:///D:\\Iris_Dataset_120_2023-12-30.csv")

输出 DataFrame 数据框:

print("[Message] Readed CSV File: D:\\Iris_Dataset_120_2023-12-30.csv")
SDF.show()

输出:

[Message] Readed CSV File: D:\Iris_Dataset_120_2023-12-30.csv
+-----------+----------+-----------+----------+----------+
|SepalLength|SepalWidth|PetalLength|PetalWidth|   Species|
+-----------+----------+-----------+----------+----------+
|        6.4|       2.8|        5.6|       2.2|Virginical|
|        5.0|       2.3|        3.3|       1.0|Versicolor|
|        4.9|       2.5|        4.5|       1.7|Virginical|
|        4.9|       3.1|        1.5|       0.1|    Setosa|
|        5.7|       3.8|        1.7|       0.3|    Setosa|
|        4.4|       3.2|        1.3|       0.2|    Setosa|
|        5.4|       3.4|        1.5|       0.4|    Setosa|
|        6.9|       3.1|        5.1|       2.3|Virginical|
|        6.7|       3.1|        4.4|       1.4|Versicolor|
|        5.1|       3.7|        1.5|       0.4|    Setosa|
|        5.2|       2.7|        3.9|       1.4|Versicolor|
|        6.9|       3.1|        4.9|       1.5|Versicolor|
|        5.8|       4.0|        1.2|       0.2|    Setosa|
|        5.4|       3.9|        1.7|       0.4|    Setosa|
|        7.7|       3.8|        6.7|       2.2|Virginical|
|        6.3|       3.3|        4.7|       1.6|Versicolor|
|        6.8|       3.2|        5.9|       2.3|Virginical|
|        7.6|       3.0|        6.6|       2.1|Virginical|
|        6.4|       3.2|        5.3|       2.3|Virginical|
|        5.7|       4.4|        1.5|       0.4|    Setosa|
+-----------+----------+-----------+----------+----------+
only showing top 20 rows

转换 Spark 中 DateFrame 各列数据类型

通常情况下, 为了避免计算出现数据类型的错误, 都需要重新转换一下数据类型。

# 转换 Spark 中 DateFrame 数据类型。
SDF = SDF.withColumn("SepalLength", col("SepalLength").cast(DoubleType()))
SDF = SDF.withColumn("SepalWidth",  col("SepalWidth").cast(DoubleType()))
SDF = SDF.withColumn("PetalLength", col("PetalLength").cast(DoubleType()))
SDF = SDF.withColumn("PetalWidth",  col("PetalWidth").cast(DoubleType()))
SDF = SDF.withColumn("Species",     col("Species").cast(StringType()))# 输出 Spark 中 DataFrame 字段和数据类型。
print("[Message] Changed Spark DataFrame Data Type:")
SDF.printSchema()

输出:

[Message] Changed Spark DataFrame Data Type:
root|-- SepalLength: double (nullable = true)|-- SepalWidth: double (nullable = true)|-- PetalLength: double (nullable = true)|-- PetalWidth: double (nullable = true)|-- Species: string (nullable = true)

字符串索引化 (StringIndexer) 转换 Species 列

StringIndexer (字符串-索引变换) 是一个估计器, 是将字符串列编码为标签索引列。索引位于 [0, numLabels), 按标签频率排序, 频率最高的排 0, 依次类推, 因此最常见的标签获取索引是 0。

# 使用 StringIndexer 转换 Species 列。
MyStringIndexer = StringIndexer(inputCol="Species", outputCol="SpeciesIdx")
# 拟合并转换数据。
IndexedSDF = MyStringIndexer.fit(SDF).transform(SDF)# 输出 StringIndexer 的转换效果。
print("[Message] The Effect of StringIndexer:")
IndexedSDF.show()

输出:

[Message] The Effect of StringIndexer:
+-----------+----------+-----------+----------+----------+----------+
|SepalLength|SepalWidth|PetalLength|PetalWidth|   Species|SpeciesIdx|
+-----------+----------+-----------+----------+----------+----------+
|        6.4|       2.8|        5.6|       2.2|Virginical|       1.0|
|        5.0|       2.3|        3.3|       1.0|Versicolor|       2.0|
|        4.9|       2.5|        4.5|       1.7|Virginical|       1.0|
|        4.9|       3.1|        1.5|       0.1|    Setosa|       0.0|
|        5.7|       3.8|        1.7|       0.3|    Setosa|       0.0|
|        4.4|       3.2|        1.3|       0.2|    Setosa|       0.0|
|        5.4|       3.4|        1.5|       0.4|    Setosa|       0.0|
|        6.9|       3.1|        5.1|       2.3|Virginical|       1.0|
|        6.7|       3.1|        4.4|       1.4|Versicolor|       2.0|
|        5.1|       3.7|        1.5|       0.4|    Setosa|       0.0|
|        5.2|       2.7|        3.9|       1.4|Versicolor|       2.0|
|        6.9|       3.1|        4.9|       1.5|Versicolor|       2.0|
|        5.8|       4.0|        1.2|       0.2|    Setosa|       0.0|
|        5.4|       3.9|        1.7|       0.4|    Setosa|       0.0|
|        7.7|       3.8|        6.7|       2.2|Virginical|       1.0|
|        6.3|       3.3|        4.7|       1.6|Versicolor|       2.0|
|        6.8|       3.2|        5.9|       2.3|Virginical|       1.0|
|        7.6|       3.0|        6.6|       2.1|Virginical|       1.0|
|        6.4|       3.2|        5.3|       2.3|Virginical|       1.0|
|        5.7|       4.4|        1.5|       0.4|    Setosa|       0.0|
+-----------+----------+-----------+----------+----------+----------+
only showing top 20 rows

提取 标签(Label)列 和 特征向量(Features)列

在创建特征向量(Features)列时, 将会用到 VectorAssembler 模块, VectorAssembler 将多个特征合并为一个特征向量。

提取 标签(Label) 列:

# 将 SpeciesIdx 列复制为 Label 列。
NewSDF = IndexedSDF.withColumn("Label", col("SpeciesIdx"))

创建 特征向量(Features) 列:

# VectorAssembler 将多个特征合并为一个特征向量。
FeaColsName:list = ["SepalLength", "SepalWidth", "PetalLength", "PetalWidth"]
MyAssembler = VectorAssembler(inputCols=FeaColsName, outputCol="Features")# 创建 特征向量(Features) 列: 拟合数据 (可选, 如果在模型训练时使用 Pipeline, 则无需在此步骤拟合数据, 当然也就无法在此步骤预览数据)。
AssembledSDF = MyAssembler.transform(NewSDF)

输出预览:

print("[Message] Assembled Label and Features for RandomForestRegressor:")
AssembledSDF.show()

预览:

[Message] Assembled for RandomForestRegressor:
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+
|SepalLength|SepalWidth|PetalLength|PetalWidth|   Species|SpeciesIdx|Label|         Features|
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+
|        6.4|       2.8|        5.6|       2.2|Virginical|       1.0|  1.0|[6.4,2.8,5.6,2.2]|
|        5.0|       2.3|        3.3|       1.0|Versicolor|       2.0|  2.0|[5.0,2.3,3.3,1.0]|
|        4.9|       2.5|        4.5|       1.7|Virginical|       1.0|  1.0|[4.9,2.5,4.5,1.7]|
|        4.9|       3.1|        1.5|       0.1|    Setosa|       0.0|  0.0|[4.9,3.1,1.5,0.1]|
|        5.7|       3.8|        1.7|       0.3|    Setosa|       0.0|  0.0|[5.7,3.8,1.7,0.3]|
|        4.4|       3.2|        1.3|       0.2|    Setosa|       0.0|  0.0|[4.4,3.2,1.3,0.2]|
|        5.4|       3.4|        1.5|       0.4|    Setosa|       0.0|  0.0|[5.4,3.4,1.5,0.4]|
|        6.9|       3.1|        5.1|       2.3|Virginical|       1.0|  1.0|[6.9,3.1,5.1,2.3]|
|        6.7|       3.1|        4.4|       1.4|Versicolor|       2.0|  2.0|[6.7,3.1,4.4,1.4]|
|        5.1|       3.7|        1.5|       0.4|    Setosa|       0.0|  0.0|[5.1,3.7,1.5,0.4]|
|        5.2|       2.7|        3.9|       1.4|Versicolor|       2.0|  2.0|[5.2,2.7,3.9,1.4]|
|        6.9|       3.1|        4.9|       1.5|Versicolor|       2.0|  2.0|[6.9,3.1,4.9,1.5]|
|        5.8|       4.0|        1.2|       0.2|    Setosa|       0.0|  0.0|[5.8,4.0,1.2,0.2]|
|        5.4|       3.9|        1.7|       0.4|    Setosa|       0.0|  0.0|[5.4,3.9,1.7,0.4]|
|        7.7|       3.8|        6.7|       2.2|Virginical|       1.0|  1.0|[7.7,3.8,6.7,2.2]|
|        6.3|       3.3|        4.7|       1.6|Versicolor|       2.0|  2.0|[6.3,3.3,4.7,1.6]|
|        6.8|       3.2|        5.9|       2.3|Virginical|       1.0|  1.0|[6.8,3.2,5.9,2.3]|
|        7.6|       3.0|        6.6|       2.1|Virginical|       1.0|  1.0|[7.6,3.0,6.6,2.1]|
|        6.4|       3.2|        5.3|       2.3|Virginical|       1.0|  1.0|[6.4,3.2,5.3,2.3]|
|        5.7|       4.4|        1.5|       0.4|    Setosa|       0.0|  0.0|[5.7,4.4,1.5,0.4]|
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+
only showing top 20 rows

训练 随机森林回归(RandomForestRegressor) 模型

将数据集划分为 “训练集” 和 “测试集”:

(TrainingData, TestData) = AssembledSDF.randomSplit([0.8, 0.2], seed=42)

创建 随机森林回归(RandomForestRegressor):

RFR = RandomForestRegressor(featuresCol="Features", labelCol="Label")

创建 Pipeline (可选):

# 创建 Pipeline, 将特征向量转换和随机森林回归模型组合在一起
# 注意: 如果要使用 Pipeline, 则在创建 特征向量(Features)列 的时候不需要拟合数据, 否则会报 "Output column Features already exists." 的错误。
MyPipeline = Pipeline(stages=[MyAssembler, RFR])

训练 随机森林回归(RandomForestRegressor) 模型:

如果在创建 特征向量(Features)列 的时候已经拟合数据:

# 训练模型 (普通模式)。
Model = RFR.fit(TrainingData)

如果在创建 特征向量(Features)列 的时候没有拟合数据:

# 训练模型 (Pipeline 模式)。
Model = MyPipeline.fit(TrainingData)

使用 随机森林回归(RandomForestRegressor) 模型预测数据

# 在测试集上进行预测。
Predictions = Model.transform(TestData)print("[Message] Prediction Results on The Test Data Set for RandomForestRegressor:")
Predictions.show()

输出:

[Message] Prediction Results on The Test Data Set for RandomForestRegressor:
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+------------------+
|SepalLength|SepalWidth|PetalLength|PetalWidth|   Species|SpeciesIdx|Label|         Features|        prediction|
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+------------------+
|        4.4|       3.2|        1.3|       0.2|    Setosa|       0.0|  0.0|[4.4,3.2,1.3,0.2]|               0.0|
|        4.6|       3.4|        1.4|       0.3|    Setosa|       0.0|  0.0|[4.6,3.4,1.4,0.3]|               0.0|
|        4.7|       3.2|        1.3|       0.2|    Setosa|       0.0|  0.0|[4.7,3.2,1.3,0.2]|               0.0|
|        4.8|       3.4|        1.6|       0.2|    Setosa|       0.0|  0.0|[4.8,3.4,1.6,0.2]|               0.0|
|        4.9|       3.1|        1.5|       0.1|    Setosa|       0.0|  0.0|[4.9,3.1,1.5,0.1]|               0.0|
|        5.0|       3.2|        1.2|       0.2|    Setosa|       0.0|  0.0|[5.0,3.2,1.2,0.2]|               0.0|
|        5.0|       3.6|        1.4|       0.2|    Setosa|       0.0|  0.0|[5.0,3.6,1.4,0.2]|               0.0|
|        5.1|       3.8|        1.9|       0.4|    Setosa|       0.0|  0.0|[5.1,3.8,1.9,0.4]|               0.2|
|        5.5|       2.4|        3.7|       1.0|Versicolor|       2.0|  2.0|[5.5,2.4,3.7,1.0]|               2.0|
|        5.5|       2.4|        3.8|       1.1|Versicolor|       2.0|  2.0|[5.5,2.4,3.8,1.1]|               2.0|
|        5.5|       2.6|        4.4|       1.2|Versicolor|       2.0|  2.0|[5.5,2.6,4.4,1.2]|               2.0|
|        5.6|       2.5|        3.9|       1.1|Versicolor|       2.0|  2.0|[5.6,2.5,3.9,1.1]|               2.0|
|        5.6|       2.9|        3.6|       1.3|Versicolor|       2.0|  2.0|[5.6,2.9,3.6,1.3]|               2.0|
|        5.7|       3.0|        4.2|       1.2|Versicolor|       2.0|  2.0|[5.7,3.0,4.2,1.2]|               2.0|
|        5.8|       2.8|        5.1|       2.4|Virginical|       1.0|  1.0|[5.8,2.8,5.1,2.4]|               1.0|
|        6.0|       3.0|        4.8|       1.8|Virginical|       1.0|  1.0|[6.0,3.0,4.8,1.8]|1.3833333333333333|
|        6.2|       3.4|        5.4|       2.3|Virginical|       1.0|  1.0|[6.2,3.4,5.4,2.3]|               1.0|
|        6.7|       3.1|        5.6|       2.4|Virginical|       1.0|  1.0|[6.7,3.1,5.6,2.4]|               1.0|
|        7.3|       2.9|        6.3|       1.8|Virginical|       1.0|  1.0|[7.3,2.9,6.3,1.8]|               1.0|
|        7.7|       2.8|        6.7|       2.0|Virginical|       1.0|  1.0|[7.7,2.8,6.7,2.0]|               1.0|
+-----------+----------+-----------+----------+----------+----------+-----+-----------------+------------------+
only showing top 20 rows

使用 RegressionEvaluator 评估模型性能

# 使用 RegressionEvaluator 评估模型性能。
MyEvaluator = RegressionEvaluator(labelCol="Label", predictionCol="prediction", metricName="mse")
mse = MyEvaluator.evaluate(Predictions)print("均方误差(MSE): %f" % mse)

输出:

均方误差(MSE): 0.008497

完整代码

#!/usr/bin/python3
# Create By GF 2023-12-30# 请确保你的 DataFrame 包含一个名为 Label 的列, 这是 Species(品种) 的列。
# 如果 label 是字符串类型的分类特征, 你可能需要使用 StringIndexer 进行索引。from pyspark.sql import Row, SparkSession
from pyspark.sql.functions import col
from pyspark.sql.types import StringType, DoubleType
# --------------------------------------------------
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator# Spark 2.0 以上版本的 spark-shell 在启动时会自动创建一个名为 spark 的 SparkSession 对象。
# 当需要手工创建时, SparkSession 可以由其伴生对象的 builder 方法创建出来。
spark = SparkSession.builder.master("local[*]").appName("spark").getOrCreate()# 调用 SparkSession 的 .read 方法读取 CSV 数据:
# 其中 .option 是读取文件时的选项, 左边是 "键(Key)", 右边是 "值(Value)", 例如 .option("header", "true") 与 {header = "true"} 类同。
SDF = spark.read.option("header", "true").option("encoding", "utf-8").csv("file:///D:\\Iris_Dataset_120_2023-12-30.csv")print("[Message] Readed CSV File: D:\\Iris_Dataset_120_2023-12-30.csv")
SDF.show()# 转换 Spark 中 DateFrame 数据类型。
SDF = SDF.withColumn("SepalLength", col("SepalLength").cast(DoubleType()))
SDF = SDF.withColumn("SepalWidth",  col("SepalWidth").cast(DoubleType()))
SDF = SDF.withColumn("PetalLength", col("PetalLength").cast(DoubleType()))
SDF = SDF.withColumn("PetalWidth",  col("PetalWidth").cast(DoubleType()))
SDF = SDF.withColumn("Species",     col("Species").cast(StringType()))# 输出 Spark 中 DataFrame 字段和数据类型。
print("[Message] Changed Spark DataFrame Data Type:")
SDF.printSchema()# 使用 StringIndexer 转换 Species 列。
MyStringIndexer = StringIndexer(inputCol="Species", outputCol="SpeciesIdx")
# 拟合并转换数据。
IndexedSDF = MyStringIndexer.fit(SDF).transform(SDF)# 输出 StringIndexer 的转换效果。
print("[Message] The Effect of StringIndexer:")
IndexedSDF.show()# 将 SpeciesIdx 列复制为 Label 列。
NewSDF = IndexedSDF.withColumn("Label", col("SpeciesIdx"))# VectorAssembler 将多个特征合并为一个特征向量。
FeaColsName:list = ["SepalLength", "SepalWidth", "PetalLength", "PetalWidth"]
MyAssembler = VectorAssembler(inputCols=FeaColsName, outputCol="Features")# 创建 特征向量(Features) 列: 拟合数据 (可选, 如果在模型训练时使用 Pipeline, 则无需在此步骤拟合数据, 当然也就无法在此步骤预览数据)。
AssembledSDF = MyAssembler.transform(NewSDF)print("[Message] Assembled Label and Features for RandomForestRegressor:")
AssembledSDF.show()# 将数据集划分为 "训练集" 和 "测试集"。
(TrainingData, TestData) = AssembledSDF.randomSplit([0.8, 0.2], seed=42)# 创建 随机森林回归(RandomForestRegressor)。
RFR = RandomForestRegressor(featuresCol="Features", labelCol="Label")# 创建 Pipeline (可选): 将特征向量转换和随机森林回归模型组合在一起
# 注意: 如果要使用 Pipeline, 则在创建 特征向量(Features)列 的时候不需要拟合数据, 否则会报 "Output column Features already exists." 的错误。
#MyPipeline = Pipeline(stages=[MyAssembler, RFR])# 训练模型 (普通模式)。
Model = RFR.fit(TrainingData)# 训练模型 (Pipeline 模式)。
#Model = MyPipeline.fit(TrainingData)# 在测试集上进行预测。
Predictions = Model.transform(TestData)print("[Message] Prediction Results on The Test Data Set for RandomForestRegressor:")
Predictions.show()# 使用 RegressionEvaluator 评估模型性能。
MyEvaluator = RegressionEvaluator(labelCol="Label", predictionCol="prediction", metricName="mse")
mse = MyEvaluator.evaluate(Predictions)print("均方误差(MSE): %f" % mse)

其它

请确保你的 DataFrame 包含一个名为 Label 的列, 这是 Species(品种) 的列。

如果 label 是字符串类型的分类特征, 你可能需要使用 StringIndexer 进行索引。

总结

以上就是关于 机器学习 PySpark-3.0.3随机森林回归(RandomForestRegressor)实例 的全部内容。

更多内容可以访问我的代码仓库:

https://gitee.com/goufeng928/public

https://github.com/goufeng928/public

这篇关于机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882107

相关文章

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

springboot+mybatis一对多查询+懒加载实例

《springboot+mybatis一对多查询+懒加载实例》文章介绍了如何在SpringBoot和MyBatis中实现一对多查询的懒加载,通过配置MyBatis的`fetchType`属性,可以全局... 目录springboot+myBATis一对多查询+懒加载parent相关代码child 相关代码懒

C++中的解释器模式实例详解

《C++中的解释器模式实例详解》这篇文章总结了C++标准库中的算法分类,还介绍了sort和stable_sort的区别,以及remove和erase的结合使用,结合实例代码给大家介绍的非常详细,感兴趣... 目录1、非修改序列算法1.1 find 和 find_if1.2 count 和 count_if1

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合

PyQt6 键盘事件处理的实现及实例代码

《PyQt6键盘事件处理的实现及实例代码》本文主要介绍了PyQt6键盘事件处理的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录一、键盘事件处理详解1、核心事件处理器2、事件对象 QKeyEvent3、修饰键处理(1)、修饰键类

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.