路径规划算法:Voronoi Planner讲解

2024-04-06 21:20

本文主要是介绍路径规划算法:Voronoi Planner讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

路径规划算法:Voronoi Planner讲解

image

附赠自动驾驶学习资料和量产经验:链接

Voronoi Diagram(也称作Dirichlet tessellation)是由俄国数学家Georgy Voronoy提出的一种空间分割算法。它通过一系列的种子节点(Seed Points)将空间切分为许多子区域,每个子区域被称为一个Cell,每个Cell中的所有点到当前Cell中的种子节点(Seed Points)的距离小于到其它所有种子节点(Seed Points)的距离。

image

图片来源: https://www.youtube.com/watch?v=7eCrHAv6sYY

image

每个Cell中包含的都是距离当前Cell距离最近的所有点,因此Cell的边界就是距离种子点(Seed Points)最远的点的集合。利用Voronoi Diagram的这个特性,将障碍物的边界当做种子点(Seed Points),那么Cell的边界就是远离所有障碍物的可行驶路径。

Voronoi Planner最大化的利用了障碍物之间的空隙,确保生成的路径是最大程度远离所有障碍物的安全行驶路径。

image

图片来源:https://natanaso.github.io/ece276b2018/ref/ECE276B_5_ConfigurationSpace.pdf

1、使用Voronoi Diagram进行路径规划

下图是一所大学校园的地图,图中包含各种多变形的障碍物,我们可以使用使用Voronoi Planner实现在地图中查找一条安全路径,最大程度的避开障碍物。

image

the northern half of Columbia's Morningside Campus.图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

为了实现Voronoi路径规划,首先用一系列的离散点集序列组成的小线段模拟逼近多边形障碍物的每个边。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

然后使用这些近似的离散点作为输入,使用Voronoi构造算法构造Voronoi Diagram。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

Voronoi diagram构造完成之后,消除顶点包含在障碍物或者与障碍物相交的Voronoi Edge,剩下的Voronoi Edge就构成了避开所有障碍物的可行驶路径集合。

image

The points that approximate thepolygonal obstacles. 图片来源:https://www.cs.columbia.edu/~pblaer/projects/path_planner/

最后,将Voronoi Edge转化为Grahp结构,将机器人的起点位置和终点位置关联到最近的Voronoi Edge,然后通过图搜索算法(Dijkstra等)就可以生成一条从起点到终点的安全行驶路线。

2、Voronio Planner VS Sample Planner

从下图的对比可以看出,Voronoi Planner规划的路径的特点是尽量的远离障碍物。

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

3、梯度下降的路径平滑算法

同基于采样的运动规划生成的曲线一样,Voronio Planner生成的曲线都是不平滑的折线,所以需要对路径进行平滑操作,平滑的方法也比较多,今天先介绍其中一种。

3.1 问题定义

如下图所示,s表示运动规划的起点,e表示运动规划终点,斜线填充的网格表示障碍物位置,蓝色的线为运动规划算法(RRT、Voronoi etc.)规划出的路线,曲折不平;红色为平滑后的运动曲线,对车辆的实际行驶比较友好。

image

image

image

3.2 算法实现

上图代码一个5x5的网格地图,红色圆圈代表一条从(0,0)到(4,4)的规划路线,下Python面代码演示了如何由这条路线生成一条平滑路线。

image

from math import *path = [[0, 0],[0, 1],[0, 2],[1, 2],[2, 2],[3, 2],[4, 2],[4, 3],[4, 4]]def smooth(path, weight_data = 0.5, weight_smooth = 0.1, tolerance = 0.000001):# Make a deep copy of path into newpathnewpath = [[0 for col in range(len(path[0]))] for row in range(len(path))]for i in range(len(path)):for j in range(len(path[0])):newpath[i][j] = path[i][j]change = tolerancewhile change >= tolerance:change = 0for i in range(1,len(path) - 1):for j in range(len(path[0])):d1 = weight_data * (path[i][j] - newpath[i][j])d2 = weight_smooth * (newpath[i-1][j] + newpath[i+1][j] - 2 * newpath[i][j])change += abs(d1 + d2)newpath[i][j] += d1 + d2return newpath newpath = smooth(path)for i in range(len(path)):print('['+ ', '.join('%.3f'%x for x in path[i]) +']> ['+', '.join('%.3f'%x for x in newpath[i]) +']')

平滑后的路径输出结果如下:

[0.000, 0.000]> [0.000, 0.000]
[0.000, 1.000]> [0.021, 0.979]
[0.000, 2.000]> [0.149, 1.851]
[1.000, 2.000]> [1.021, 1.979]
[2.000, 2.000]> [2.000, 2.000]
[3.000, 2.000]> [2.979, 2.021]
[4.000, 2.000]> [3.851, 2.149]
[4.000, 3.000]> [3.979, 3.021]
[4.000, 4.000]> [4.000, 4.000]

平滑算法的实际应用效果如下:

image

图片来源:Local and Global Motion Planning for Unmanned Surface Vehicle

相关代码

1、Boost Voronio Diagram。(https://www.boost.org/doc/libs/1_60_0/libs/polygon/doc/voronoi_diagram.htm)

2、Scipy Spatial Voronoi(https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.spatial.Voronoi.html)

3、Voronoi Planner的代码实现可以参考:

https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/VoronoiRoadMap/voronoi_road_map.py

参考链接

1、Boost Voronio Diagram。(https://www.boost.org/doc/libs/1_60_0/libs/polygon/doc/voronoi_diagram.htm)

2、Robot Path Planning Using Generalized Voronoi Diagrams(https://www.cs.columbia.edu/~pblaer/projects/path_planner/)

3、Local and Global Motion Planning for Unmanned Surface Vehicle,Roman Fedorenko, Boris Gurenko

这篇关于路径规划算法:Voronoi Planner讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880859

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl