表格存储最佳实践:一种用于存储时间序列数据的表结构设计

本文主要是介绍表格存储最佳实践:一种用于存储时间序列数据的表结构设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在表格存储的数据模型这篇文章中提到:


在表格存储内部,一个表在创建的时候需要定义主键,主键会由多列组成,我们会选择主键的第一列作为分片键。当表的大小逐渐增大后,表会分裂,由原来的一个分区自动分裂成多个分区。触发分裂的因素会有很多,其中一个很关键的因素就是数据量。分裂后,每个分区会负责某个独立的分片键范围,每个分区管理的分片键范围都是无重合的,且范围是连续的。在后端会根据写入数据行的分片键的范围,来定位到是哪个分片。

 

表会以分区为单位,被均匀的分配到各个后端服务器上,提供分布式的服务。


 

        在表格存储的最佳实践中提出,一个设计良好的主键,需要避免访问压力集中在一个小范围的连续的分片键上,也就是说避免热点分片。设计良好的表结构,整张表的访问压力能够均匀的分散在各个分片上,这样才能充分利用后端服务器的能力。

 

        那在使用表格存储来存储时间序列数据时,我们应该如何设计表的结构,避免热点分片的问题?

 

        假设我们需要设计一张表,用于存储监控信息,监控信息包括:时间戳(timestamp)、监控指标名称(metric)、主机名(host)和监控指标值(value)。而我们的查询场景为,指定监控指标名称和时间范围,查询该监控指标的所有值。通常我们会这样设计我们的表结构:

 

 

表设计一:

 

 

c820f472b78acf84341a1312b75bcb1681d4afba

 


该设计以metric列为分片键,能够满足查询的场景,但是有很严重的分片热点问题。假设一个metric下每秒采集一个点,而我们有上百台设备,则该分片每秒需要能够提供上百的写入能力,这点也没有问题。但是由于使用了metric作为分片键,metric的值为常量,随着数据量的上涨,其无法再进行分裂,会导致该分片下的数据量不断膨胀,可能超过一台物理机所能承受的上限,存在分片数据量的热点。

 

 

为了解决这个问题,我们对分片键做一个调整:

 

表设计二:

b6cd2deec148f387ad46e143f56a88f12390f255

 

我们将第一列主键和第二列主键合并为一列主键作为分片键,在数据的分布模式上并没有什么变更,但是引入了时间这个维度后,我们避免了分片数据量的热点。但是当host规模变大,从上百膨胀到上万,则该张表需要每秒提供上万并发的写入能力。我们需要将该表的写入压力均匀的分散到各个分片上,但是由于其数据的特点,每次写入的数据都是最新时间的数据,其写入压力永远集中在最新时间戳所在的分片上。

 

为了将写入压力均匀的分散到分片上,我们再对表做一个重新设计:

 

表设计三:

4ff28d7fe2d852e218267c36a3e993fd99b643d0

 

我们引入一个新的列 - bucket,在每行数据写入前,为每行数据分配一个桶(可随机分配),以桶的编号为分片键(HBase中有类似的解决方案,称为salted key)。桶的个数任意,可扩张,在写入之前将数据预分桶之后,也就解决了写入压力热点的问题,因为写入压力永远是均匀分配在各个桶上的。可根据具体的写入压力,决定桶的个数。

 

数据分桶后,如果需要读取完整的数据,需要在每个桶内都分别执行一遍查询后将数据进行汇总,可以使用我们SDK提供的异步接口,来并行的查询每个桶,提高查询的效率。

 

总结

在时间序列存储的场景,例如监控数据或者日志数据,通常比较难解决的是写入的问题,传统的数据库难以承载如此大数据量、高并发的写入压力。

 

表格存储能够提供非常优秀的写入能力,在阿里内部得到到了正好的实践和证明。但是若要发挥其强度的写入能力,需要有一个良好的表结构设计。

 

本篇文章给出了一个存储时间序列数据库的最佳实践,供参考。但表结构设计并不是千篇一律的,需要根据不同的业务场景设计做灵活的调整,欢迎一起探讨。

 

转:https://yq.aliyun.com/articles/54644?spm=a2c4e.11153940.blogcont54785.11.7fef7f4bdqjlWp

这篇关于表格存储最佳实践:一种用于存储时间序列数据的表结构设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880595

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X