本文主要是介绍基于离散差分法的复杂微分方程组求解matlab数值仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
1.程序功能描述
2.测试软件版本以及运行结果展示
3.核心程序
4.本算法原理
5.完整程序
1.程序功能描述
基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。
2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
3.核心程序
..........................................................................
% ʼ
L = 0.05; % ռ䳤
time = 1e-8; %ʱ 䳤
Nz = 10; % ռ
Nt = 10; %ʱ
dt = time/Nt;%t ֵ ۼ
dz = L/Nz;%z ֵ ۼ N1 = zeros(Nz,Nt);
N2 = zeros(Nz,Nt);
N3 = zeros(Nz,Nt);
N4 = zeros(Nz,Nt);
N1_Yb = zeros(Nz,Nt);
N2_Yb = zeros(Nz,Nt);
Ps = zeros(Nz,Nt);PASE_plus = zeros(M,Nz,Nt);
PASE_minus = zeros(M,Nz,Nt);
Pp_plus = zeros(Nz,Nt);
Pp_minus = zeros(Nz,Nt);G = zeros(Nz,Nt);
NF = zeros(Nz,Nt);% 1 ʽ 1 ϵ IJ ʾ
W11 = Fp*O13_vp/(Ac*h*Vp);
W12 = Fs*O12_vs/(Ac*h*Vs);
for i = 1:MW13(i) = F_ASE_vj(i) * O12_vj(i) / (Ac*h*Vj(i));
endW14 = Fs*O21_vs/(Ac*h*Vs);
for i = 1:MW15(i) = F_ASE_vj(i) * O21_vj(i) / (Ac*h*Vj(i));
endW16 = Fp*O31_vp/(Ac*h*Vp);% 1 ʽ 2 ϵ IJ ʾ
W21 = Fs*O12_vs/(Ac*h*Vs);for i = 1:MW22(i) = F_ASE_vj(i) * O12_vj(i) / (Ac*h*Vj(i));
end
W23 = Fs*O21_vs/(Ac*h*Vs);for i = 1:MW24(i) = F_ASE_vj(i) * O21_vj(i) / (Ac*h*Vj(i));
end% 1 ʽ 3 ϵ IJ ʾ
W31 = Fp*O13_vp/(Ac*h*Vp);
W32 = Fp*O31_vp/(Ac*h*Vp); % 1 ʽ 4 ϵ IJ ʾ
W41 = Fp*O12Yb_vp/(Ac*h*Vp);
W42 = Fp*O21Yb_vp/(Ac*h*Vp);
Ps(1,:) = 0.001*ones(1,Nt);
Pp_plus(1,:) = 0.06*ones(1,Nt);
Pp_minus(1,:) = 0.04*ones(1,Nt);for j = 1:Nt-1for i = 1:Nz-1% 1ʽ 1N1(i,j+1) = N1(i,j) + ...dt*( -1*(W11*(Pp_plus(i,j) + Pp_minus(i,j)) + W12*Ps(i,j) + sum(W13.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N1(i,j) +...(A21 + W14*Ps(i,j) + sum(W15.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N2(i,j) + ...C2*N2(i,j)^2 + W16*(Pp_plus(i,j) + Pp_minus(i,j))*N3(i,j) + C3*N3(i,j)^2 - C14*N1(i,j)*N4(i,j)+...-1*Ktr*N2_Yb(i,j)*N1(i,j)+Kba*N1_Yb(i,j)*N3(i,j) );% 1ʽ 2N2(i,j+1) = N2(i,j) + ... dt*( (W21*Ps(i,j)+sum(W22.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))'))*N1(i,j) +...-1*(A21 + W23*Ps(i,j) + sum( W24.*(PASE_plus(:,i,j)+PASE_minus(:,i,j))' ))*N2(i,j) +...A32*N3(i,j) - 2*C2*N2(i,j)^2 + 2*C14*N1(i,j)*N4(i,j) );% 1ʽ 3N3(i,j+1) = N3(i,j) + ... dt*( W31*(Pp_plus(i,j) + Pp_minus(i,j))*N1(i,j) - A32*N3(i,j) - W32*(Pp_plus(i,j) + Pp_minus(i,j))*N3(i,j) -...2*C3*N3(i,j)^2 + A43*N4(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j) );% 1ʽ 4N1_Yb(i,j+1) = N1_Yb(i,j) + ...dt*(-1*W41*(Pp_plus(i,j) + Pp_minus(i,j))*N1_Yb(i,j) + W42*(Pp_plus(i,j) + Pp_minus(i,j))*N2_Yb(i,j) +...A21Yb*N2_Yb(i,j) + Ktr*N2_Yb(i,j)*N1(i,j) - Kba*N1_Yb(i,j)*N3(i,j));% 1ʽ 5N4(i,j+1) = NEr - (N1(i,j+1) + N2(i,j+1) + N3(i,j+1)); % 1ʽ 6N2_Yb(i,j+1) = NYb - N1_Yb(i,j+1);if N1(i,j+1) > NEr,N1(i,j+1) = NEr;endif N2(i,j+1) > NEr,N2(i,j+1) = NEr;end if N3(i,j+1) > NEr,N3(i,j+1) = NEr;end if N4(i,j+1) > NEr,N4(i,j+1) = NEr;end if N1_Yb(i,j+1) > NYb,N1_Yb(i,j+1) = NYb;endif N2_Yb(i,j+1) > NYb,N2_Yb(i,j+1) = NYb;end if N1(i,j+1) < 0,N1(i,j+1) = 0;endif N2(i,j+1) < 0,N2(i,j+1) = 0;end if N3(i,j+1) < 0,N3(i,j+1) = 0;end if N4(i,j+1) < 0,N4(i,j+1) = 0;end if N1_Yb(i,j+1) < 0,N1_Yb(i,j+1) = 0;endif N2_Yb(i,j+1) < 0,N2_Yb(i,j+1) = 0;end % Ϸ ̼ õ N1 N2 N3 N4 N1Yb N2Yb % 2Pp_plus(i+1,j) = Pp_plus(i,j) + dz*(-Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_plus(i,j) - ap*Pp_plus(i,j));Pp_minus(i+1,j) = Pp_minus(i,j) + dz*(Fp*(O13_vp*N1(i,j) - O31_vp*N3(i,j) + O12Yb_vp*N1_Yb(i,j) - O21Yb_vp*N2_Yb(i,j))*Pp_minus(i,j) + ap*Pp_plus(i,j));Ps(i+1,j) = Ps(i,j) + dz*(Fs*( O21_vs*N2(i,j) - O12_vs*N1(i,j) )*Ps(i,j) - as*Ps(i,j)); for ii = 1:MPASE_plus(ii,i+1,j) = PASE_plus(ii,i,j)+dz*(F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_plus(ii,i,j) +...2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)-as*PASE_plus(ii,i,j));PASE_minus(ii,i+1,j) = PASE_minus(ii,i,j)+dz*(-1*F_ASE_vj(ii)*( O21_vj(ii)*N2(i,j) - O12_vj(ii)*N1(i,j) ) * PASE_minus(ii,i,j) -...2*h*Vj(ii)*DVj(ii)*F_ASE_vj(ii)*O21_vj(ii)*N2(i,j)+as*PASE_minus(ii,i,j)); endif Pp_plus(i+1,j) < 0,Pp_plus(i+1,j) = 0;endif Pp_minus(i+1,j) < 0,Pp_minus(i+1,j) = 0;endif Ps(i+1,j) < 0,Ps(i+1,j) = 0;end %ͨ ̬ õ Pp+ Pp- Pase+ Pase- Psend
endfor z = 1:Nzfor t = 1:NtPASE_plus2(z,t) = sum(PASE_plus(:,z,t));PASE_minus2(z,t) = sum(PASE_minus(:,z,t));end
endfor z = 1:Nzfor t = 1:NtG(z,t) = 10*log10(Ps(z,t)/Ps(1,1)); end
endfor z = 1:Nzfor t = 1:NtNF(z,t) = 10*log10(1/G(z,t) + PASE_plus2(z,t)/(G(z,t)*Vs*DVs) ); end
end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Pp_plus2 = interp1(dz:dz:L,Pp_plus(1:end,Nz),0:dz/10:L,'cubic');
Pp_minus2 = interp1(dz:dz:L,Pp_minus(1:end,Nz),0:dz/10:L,'cubic');figure;
subplot(211);
plot(0:dz/10:L,Pp_plus2,'g-','LineWidth',3);
xlabel('z');
ylabel('Pp+(Z)');
title('Pp+(Z)&z');
grid on;
subplot(212);
plot(L:-dz/10:0,Pp_minus2,'m--','LineWidth',2);
xlabel('z');
ylabel('Pp-(Z)');
title('Pp-(Z)&z');
grid on;
16_015m
4.本算法原理
本课题求解的方程组表达式如下:
基于离散差分法的复杂微分方程组求解.“连续微分方程”到“离散微分方程”到“差分方程”,离散微分方程,变成差分方程。建立差分方程时,时间采用一阶显格式,空间采用一阶偏心差分格式。
5.完整程序
VVV
这篇关于基于离散差分法的复杂微分方程组求解matlab数值仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!