Data-efficient Fine-tuning for LLM-based Recommendation

2024-04-05 07:36

本文主要是介绍Data-efficient Fine-tuning for LLM-based Recommendation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • Introduction

利用大型语言模型(LLM)进行推荐最近引起了相当大的关注,其中微调在 LLM 的适应中发挥着关键作用。然而,在快速扩展的推荐数据上微调LLMs的成本限制了其实际应用。为了应对这一挑战,小样本微调提供了一种很有前途的方法,可以使LLMs快速适应新的推荐数据。我们提出了基于 LLM 的高效推荐的 数据修剪任务,旨在识别为 LLM 的 小样本微调量身定制的代表性样本。虽然核心集选择与所提出的任务密切相关,但现有的核心集选择方法通常依赖于次优启发式指标,或者需要对大规模推荐数据进行成本高昂的优化。为了解决这些问题,我们在基于LLM的推荐背景下引入了数据修剪任务的两个主要目标:1)高精度旨在识别可以 带来高整体性能的有影响力的样本; 2)高效率强调了数据 修剪过程的低成本。为了实现这两个目标,我们提出了一种新颖的数据修剪方法,结合了两个分数,即影响力分数和努力分数,以有效地识别有影响力的样本。特别是, 引入影响分数来准确估计删除每个样本对整体性能的影响。为了实现数据修剪过程的低成本,我们采用 小型代理模型来代替 LLM 以获得影响力得分。考虑到替代模型和LLMs之间的潜在差距,我们进一步提出了一个努力分数,以优先考虑专门针对LLMs的一些 硬样本。我们在两个基于 LLM 的竞争性推荐模型上实例化了所提出的方法,并且三个真实世界数据集的实证结果验证了我们所提出方法的有效性。特别是,所提出的方法仅使用 2% 的样本就超越了全数据微调,减少了 97% 的时间成本。

Introduction

LLM 中编码的丰富的世界知识为高效微调提供了一种有前途的解决方案:少样本微调。之前的研究发现,LLM 有潜力通过对随机采样的少量数据进行微调来快速适应推荐任务 [3,4,32](图 1(a)),从而显着减少训练时间和计算成本。尽管其效率很高,但随机采样的数据可能缺乏足够的代表性,无法使法LLMs有效理解新项目和用户行为。为了解决这个问题,我们引入了数据修剪任务,以实现基于 LLM 的高效推荐,其目的是识别为 LLM 的小样本微调量身定制的代表性样本。与此数据修剪任务密切相关的文献是核心集选择[16]。它尝试从完整数据中选择一个较小但具有代表性的子集,旨在实现可比较的性能。现有的核心集选择方法通常分为两类2:1)启发式方法根据预定义的指标选择硬样本或多样化样本[36,39,53]。这种启发式方法不估计选择的样本对经验风险的影响,从而可能导致次优的核心集选择; 2)基于优化的方法主要考虑选择可以最小经验风险的子集。训练有素的 LLM 对完整数据进行研究。然而,由于复杂且成本高昂的双层优化,这些方法不适用于大规模推荐数据集,或者追求这两个目标面临两个挑战: • 为了实现高精度,必须测量离散优化问题[20]。更糟糕的是,无论是启发式的还是基于优化的方法都依赖于通过评估所有样本的一致性来训练良好的模型,成本高昂,因为它需要完整的数据来选择核心集,例如,计算预定义的分数。因此,直接应用这些方法是不可行的。

为了克服上述问题,我们总结了在基于LLM的推荐背景下数据修剪的两个主要目标:1)高准确性,重点是选择可以导致低经验风险的样本; 2)高效率,强调数据修剪过程的低成本,即消除训练有素的LLMs对完整数据的依赖。然而,实现这两个目标面临着两个挑战: • 为了实现高精度,必须衡量删除每个训练样本对经验风险的影响。然而,评估所有样本的影响是昂贵的,因为它需要对每个样本进行留一再训练[46]。为了实现高效率,一种可能的解决方案是训练用于样本选择的代理模型,例如使用小型传统推荐模型,与LLM相比,这可以大大减少GPU内存使用和训练时间(见图1( b))。然而,LLMs和代理模型之间存在差距,因为它们在学习用户行为方面的能力不同(参见图 3)。因此,替代模型选择的有影响力的样本可能会偏离LLMs的样本,从而可能损害 大模型的迁移性。
为了应对这些挑战,我们提出了一种新的数据修剪方法,以有效地识别有影响力的样本,以进行基于LLM的推荐器微调(简称为DEALRec)。 DEALRec 利用两个分数,即影响力分数和努力度分数来识别有影响力的样本。制定影响分数来估计删除每个训练样本对经验风险的影响。它是通过链规则二阶优化技术[28]扩展影响函数[18]来计算的。为了有效计算所有样本的影响力得分,DEALRec 采用了一种简单而有效的对称属性来加速计算,只需要对所有样本进行一次估计(参见第 3.1 节)。此后,DEALRec使用传统的推荐模型作为替代模型来获取影响力分数,并引入努力分数来缩小替代模型与LLM之间的差距。努力分数是通过计算样本损失的梯度范数获得的,直观地衡量LLMs适应特定样本的努力。通过用努力分数对影响力分数进行正则化,DEALRec 识别出具有影响力的样本,这些样本既包含完整数据的代表性,又包含对LLMs的重要性。我们在两个基于 LLM 的推荐模型上实例化 DEALRec,并在三个真实数据集上进行广泛的实验,验证了 DEALRec 在效率和准确性方面的优越性
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于Data-efficient Fine-tuning for LLM-based Recommendation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877998

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

BD错误集锦3——ERROR: Can't get master address from ZooKeeper; znode data == null

hbase集群没启动,傻子!   启动集群 [s233 s234 s235]启动zk集群 $>zkServer.sh start $>zkServer.sh status   [s233] 启动dfs系统 $>start-dfs.sh 如果s237 namenode启动失败,则 [s237] $>hadoop-daemon.sh start namenode [s233]启动yarn集群

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解 码客 卢益贵 ygluu 关键词:游戏策划 可配置化 模块化配置 数据引擎 条件系统 红点系统 一、前言 在插件式模块化软件开发当中,既要模块高度独立(解耦)又要共享模块数据,最好的方法是有个中间平台(中间件)提供标准的接口来进行数据的交换,这在很多行业软件开发中已经广泛应用。但是,由于中间件的抽象和封

论文阅读--Efficient Hybrid Zoom using Camera Fusion on Mobile Phones

这是谷歌影像团队 2023 年发表在 Siggraph Asia 上的一篇文章,主要介绍的是利用多摄融合的思路进行变焦。 单反相机因为卓越的硬件性能,可以非常方便的实现光学变焦。不过目前的智能手机,受制于物理空间的限制,还不能做到像单反一样的光学变焦。目前主流的智能手机,都是采用多摄的设计,一般来说一个主摄搭配一个长焦,为了实现主摄与长焦之间的变焦,目前都是采用数字变焦的方式,数字变焦相比于光学

【LLM之KG】CoK论文阅读笔记

研究背景 大规模语言模型(LLMs)在许多自然语言处理(NLP)任务中取得了显著进展,特别是在零样本/少样本学习(In-Context Learning, ICL)方面。ICL不需要更新模型参数,只需利用几个标注示例就可以生成预测。然而,现有的ICL和链式思维(Chain-of-Thought, CoT)方法在复杂推理任务上仍存在生成的推理链常常伴随错误的问题,导致不真实和不可靠的推理结果。

▶《强化学习的数学原理》(2024春)_西湖大学赵世钰 Ch5 蒙特卡洛方法【model-based ——> model-free】

PPT 截取必要信息。 课程网站做习题。总体 MOOC 过一遍 1、视频 + 学堂在线 习题 2、 过 电子书 是否遗漏 【下载:本章 PDF GitHub 页面链接 】 【第二轮 才整理的,忘光了。。。又看了一遍视频】 3、 过 MOOC 习题 看 PDF 迷迷糊糊, 恍恍惚惚。 学堂在线 课程页面链接 中国大学MOOC 课程页面链接 B 站 视频链接 PPT和书籍下载网址: 【Gi

Core Data 网络应用实例

转自:http://www.cocoachina.com/applenews/devnews/2014/0430/8275.html 转自 answer_huang的博客 几乎每一个应用开发者都需要经历的就是将从 web service 获取到的数据转变到 Core Data 中。这篇文章阐述了如何去做。我们在这里讨论的每一个问题在之前的文章中都已经描述过了,并且 Apple 在

越复杂的CoT越有效吗?Complexity-Based Prompting for Multi-step Reasoning

Complexity-Based Prompting for Multi-step Reasoning 论文:https://openreview.net/pdf?id=yf1icZHC-l9 Github:https://github.com/FranxYao/chain-of-thought-hub 发表位置:ICLR 2023 Complexity-Based Prompting for

LLM agentic模式之reflection:SELF-REFINE、Reflexion、CRITIC

SELF-REFINE SELF-REFINE出自2023年3月的论文《Self-Refine: Iterative Refinement with Self-Feedback》,考虑到LLM第一次生成结果可能不是最好的输出,提出一种包括反馈(feedback)和改善(refinement)两个步骤的迭代方法来改进LLM的初始输出。 基本思路 对于输入,SELF-REFINE让LLM生成一个

spring-data-redis 连接池应用

具体配置看我的项目。用的是redisTemplate ,和jdbctemplate  是不是很相似。 真的不想吐槽csdn,钻钱眼里了,我想上传我的代码,免费都不行吗 想要测试代码可以私信,也可以模仿https://www.cnblogs.com/tankaixiong/p/3660075.html  这个链接下的。