StarRocks实战——华米科技埋点分析平台建设

2024-04-05 06:52

本文主要是介绍StarRocks实战——华米科技埋点分析平台建设,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、原有方案及其痛点

二、引入StarRocks

三、方案改造

3.1 架构设计

3.2 数据流程

3.3 性能指标

3.4 改造收益


前言

     华米科技是一家基于云的健康服务提供商,每天都会有海量的埋点数据,以往基于HBase建设的埋点计算分析项目往往效率上会相对比较低,查询方式不够灵活 。

    在埋点分析中,用户往往是基于单维度或者多维度组合去观测某个指标,这里的维度可以是时间,事件名称,城市或者设备属性等,指标可以是用户量、某个埋点的次数等。在此海量埋点数据背景下,如何比较灵活,高效的完成维度+指标的计算,满足用户快速查询分析的需求,是一个值得探索的问题。基于高效的OLAP引擎建设埋点分析平台就成为了业务发展中的重要一环。

一、原有方案及其痛点

    在之前的架构中,华米科技的埋点数据统计相关信息,需要根据统计的指标,优先将需要计算的指标(例如PV、UV)通过Spark /Hive进行预计算操作,然后写入到HBase中,对下游相关用户提供点查的能力。

对于该方案,以下三点是较为不便的:

  • 在HBase中,数据以KV形式存储,只能提供点查能力,不具备复杂的统计分析能力;
  • 无法使用Bitmap 相关技术,将需要的指标事先计算出来,方式不够灵活,不能做集合操作;
  • 流程链路较长,维护复杂度高,不具备模型抽象能力,业务升级有所不便

二、引入StarRocks

   针对数据存储层的问题,着力于寻找一款高性能、简单易维护的数据库产品来替换已有的 Spark + HBase 架构,同时也希望在业务层上能突破HBase点查的限制,通过实时多表关联的方式拓展业务层的需求。

    目前市面上的 OLAP 数据库产品很多,诸如 Impala、Druid、ClickHouse 及 StarRocks。在经过一系列的对比之后,选择了 StarRocks 来作为 华米的 OLAP 引擎,替换原有的HBase成为存储层的新选择。

    从上面的对比可以看出,StarRocks是一款极速全场景 MPP企业级数据库产品,具备水平在线扩缩容,兼容Mysql协议和Mysql生态,提供全面向量化引擎与多种数据源联邦查询等重要特性,在全场景OLAP业务上提供统一的解决方案,适用于对性能,实时性,并发能力和灵活性有较高要求的各类应用场景。

三、方案改造

3.1 架构设计

   当前埋点数据经由网关转入kafka,采用Hudi on Flink 的模式进行数据清洗,过滤,转换,基于流式数据湖构建OLAP的预处理层。根据数据特性和写入的性能要求以及成本的权衡,分别基于Hudi 的 Upsert 和 Append 模式构建 DWD 层(借助 Hudi 的去重、追加能力),定时离线处理数据转入DWS,考虑数仓的整体架构以及成本优化,将DWS数据定时离线导入到StarRocks中,最后经由统一的查询分析平台查询StarRocks数据。

3.2 数据流程

 详细流程如下:

(1)对原始数据进行数据转换处理,然后根据数据特性,分别以Upsert 模式和Append模式接入Hudi(对数据重复不敏感的业务数据直接以Append 模式高效写入Hudi)

(2)将产出的数据经由 Broker Load 写入带有Btimap字段的聚合模型,生成业务Btimap数据;

(3)根据业务需求,自定义对Btimap进行集合操作(当前的应用场景为生成PV,UV等数据);

(4)用户根据查询分析平台进行自助业务指标查询;

3.3 性能指标

  通过StarRocks的监控平台可以看到查询的平均耗时在100ms左右,P99延迟大概在250ms 左右,能够很好地满足埋点数据分析平台业务上的需求。

3.4 改造收益

  • 高效:能够快速响应用户的查询分析需求,很多大查询效率从分钟级别降低至秒级。
  • 灵活:满足多维度、多时间段自由组合的指标统计分析,不需要提前计算冗余统计指标。
  • 节约空间:StarRocks 自身的高效存储结构,同等业务量的数据存储成本较以往下降20%;
  • 简单:相较于 ClickHouse,维护管理所需的人力成本有所降低。
  • 便捷:用户自助查询便捷,取数体验有所提升,部分指标点查速度从之前的分钟级降低到秒级,部分指标可以达到毫秒级。

参考文章:

https://mp.weixin.qq.com/s/ci9iRMz4FvqcXs5FtBSxKg

这篇关于StarRocks实战——华米科技埋点分析平台建设的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877911

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结