【DA-CLIP】test.py解读,调用DA-CLIP和IRSDE模型复原计算复原图与GT图SSIM、PSNR、LPIPS

2024-04-05 02:12

本文主要是介绍【DA-CLIP】test.py解读,调用DA-CLIP和IRSDE模型复原计算复原图与GT图SSIM、PSNR、LPIPS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文件路径daclip-uir-main/universal-image-restoration/config/daclip-sde/test.py

代码有部分修改

导包

import argparse
import logging
import os.path
import sys
import time
from collections import OrderedDict
import torchvision.utils as tvutilsimport numpy as np
import torch
from IPython import embed
import lpipsimport options as option
from models import create_modelsys.path.insert(0, "../../")
import open_clip
import utils as util
from data import create_dataloader, create_dataset
from data.util import bgr2ycbcr

注意open_clip使用的是项目里的代码,而非环境里装的那个。data、util、option同样是项目里有的包

声明

#### options
parser = argparse.ArgumentParser()
parser.add_argument("-opt", type=str, default='options/test.yml', help="Path to options YMAL file.")
opt = option.parse(parser.parse_args().opt, is_train=False)opt = option.dict_to_nonedict(opt)

配置文件 

设置配置文件相对地址options/test.yml

在该配置文件中配置GT和LQ图像文件地址

datasets:test1:name: Testmode: LQGTdataroot_GT: C:\Users\86136\Desktop\LQ_test\shadow\GTdataroot_LQ: C:\Users\86136\Desktop\LQ_test\shadow\LQ

设置results_root结果地址,每次计算结束这个地址保存要求记录的计算结果

该目录下Test文件夹将保存一张GT一张LQ一张复原图像  。

不设置也会默认在项目内 daclip-uir-main\results\daclip-sde\universal-ir

#### path
path:pretrain_model_G: E:\daclip\pretrained\universal-ir.pthdaclip: E:\daclip\pretrained\daclip_ViT-B-32.ptresults_root: C:\Users\86136\Desktop\daclip-uir-main\results\daclip-sde\universal-irlog: 

 

#### mkdir and logger
util.mkdirs((pathfor key, path in opt["path"].items()if not key == "experiments_root"and "pretrain_model" not in keyand "resume" not in key)
)# os.system("rm ./result")
# os.symlink(os.path.join(opt["path"]["results_root"], ".."), "./result")

 报错执行代码没有删除再创建权限?我把相关os操作注释了,全部保存到result对我影响不大

加载创建数据对

#### Create test dataset and dataloader
test_loaders = []
for phase, dataset_opt in sorted(opt["datasets"].items()):test_set = create_dataset(dataset_opt)test_loader = create_dataloader(test_set, dataset_opt)logger.info("Number of test images in [{:s}]: {:d}".format(dataset_opt["name"], len(test_set)))test_loaders.append(test_loader)

 自定义包含复原IR-SDE模型的外层类model,参考app.py

# load pretrained model by default
model = create_model(opt)
device = model.device

 加载DA-CLIP、IR-SDE

# clip_model, _preprocess = clip.load("ViT-B/32", device=device)
if opt['path']['daclip'] is not None:clip_model, preprocess = open_clip.create_model_from_pretrained('daclip_ViT-B-32', pretrained=opt['path']['daclip'])
else:clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
tokenizer = open_clip.get_tokenizer('ViT-B-32')
clip_model = clip_model.to(device)

else是直接使用CLIP的ViT-B-32模型进行测试的代码。与我测DA-CLIP无关。

想使用的话 目测要预先下载对应模型权重并手动修改pretrained为文件地址,否则报错hf无法连接

sde = util.IRSDE(max_sigma=opt["sde"]["max_sigma"], T=opt["sde"]["T"], schedule=opt["sde"]["schedule"], eps=opt["sde"]["eps"], device=device)
sde.set_model(model.model)
lpips_fn = lpips.LPIPS(net='alex').to(device)scale = opt['degradation']['scale']

加载IR-SDE、LPIPS

如果不指定crop_border后续crop_border=scale

处理并计算


for test_loader in test_loaders:test_set_name = test_loader.dataset.opt["name"]  # path opt['']logger.info("\nTesting [{:s}]...".format(test_set_name))test_start_time = time.time()dataset_dir = os.path.join(opt["path"]["results_root"], test_set_name)util.mkdir(dataset_dir)test_results = OrderedDict()test_results["psnr"] = []test_results["ssim"] = []test_results["psnr_y"] = []test_results["ssim_y"] = []test_results["lpips"] = []test_times = []for i, test_data in enumerate(test_loader):single_img_psnr = []single_img_ssim = []single_img_psnr_y = []single_img_ssim_y = []need_GT = False if test_loader.dataset.opt["dataroot_GT"] is None else Trueimg_path = test_data["GT_path"][0] if need_GT else test_data["LQ_path"][0]img_name = os.path.splitext(os.path.basename(img_path))[0]#### input dataset_LQLQ, GT = test_data["LQ"], test_data["GT"]img4clip = test_data["LQ_clip"].to(device)with torch.no_grad(), torch.cuda.amp.autocast():image_context, degra_context = clip_model.encode_image(img4clip, control=True)image_context = image_context.float()degra_context = degra_context.float()noisy_state = sde.noise_state(LQ)model.feed_data(noisy_state, LQ, GT, text_context=degra_context, image_context=image_context)tic = time.time()model.test(sde, save_states=False)toc = time.time()test_times.append(toc - tic)visuals = model.get_current_visuals()SR_img = visuals["Output"]output = util.tensor2img(SR_img.squeeze())  # uint8LQ_ = util.tensor2img(visuals["Input"].squeeze())  # uint8GT_ = util.tensor2img(visuals["GT"].squeeze())  # uint8suffix = opt["suffix"]if suffix:save_img_path = os.path.join(dataset_dir, img_name + suffix + ".png")else:save_img_path = os.path.join(dataset_dir, img_name + ".png")util.save_img(output, save_img_path)# remove it if you only want to save output imagesLQ_img_path = os.path.join(dataset_dir, img_name + "_LQ.png")GT_img_path = os.path.join(dataset_dir, img_name + "_HQ.png")util.save_img(LQ_, LQ_img_path)util.save_img(GT_, GT_img_path)if need_GT:gt_img = GT_ / 255.0sr_img = output / 255.0crop_border = opt["crop_border"] if opt["crop_border"] else scaleif crop_border == 0:cropped_sr_img = sr_imgcropped_gt_img = gt_imgelse:cropped_sr_img = sr_img[crop_border:-crop_border, crop_border:-crop_border]cropped_gt_img = gt_img[crop_border:-crop_border, crop_border:-crop_border]psnr = util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)ssim = util.calculate_ssim(cropped_sr_img * 255, cropped_gt_img * 255)lp_score = lpips_fn(GT.to(device) * 2 - 1, SR_img.to(device) * 2 - 1).squeeze().item()test_results["psnr"].append(psnr)test_results["ssim"].append(ssim)test_results["lpips"].append(lp_score)if len(gt_img.shape) == 3:if gt_img.shape[2] == 3:  # RGB imagesr_img_y = bgr2ycbcr(sr_img, only_y=True)gt_img_y = bgr2ycbcr(gt_img, only_y=True)if crop_border == 0:cropped_sr_img_y = sr_img_ycropped_gt_img_y = gt_img_yelse:cropped_sr_img_y = sr_img_y[crop_border:-crop_border, crop_border:-crop_border]cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border]psnr_y = util.calculate_psnr(cropped_sr_img_y * 255, cropped_gt_img_y * 255)ssim_y = util.calculate_ssim(cropped_sr_img_y * 255, cropped_gt_img_y * 255)test_results["psnr_y"].append(psnr_y)test_results["ssim_y"].append(ssim_y)logger.info("img{:3d}:{:15s} - PSNR: {:.6f} dB; SSIM: {:.6f}; LPIPS: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.".format(i, img_name, psnr, ssim, lp_score, psnr_y, ssim_y))else:logger.info("img:{:15s} - PSNR: {:.6f} dB; SSIM: {:.6f}.".format(img_name, psnr, ssim))test_results["psnr_y"].append(psnr)test_results["ssim_y"].append(ssim)else:logger.info(img_name)ave_lpips = sum(test_results["lpips"]) / len(test_results["lpips"])ave_psnr = sum(test_results["psnr"]) / len(test_results["psnr"])ave_ssim = sum(test_results["ssim"]) / len(test_results["ssim"])logger.info("----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n".format(test_set_name, ave_psnr, ave_ssim))if test_results["psnr_y"] and test_results["ssim_y"]:ave_psnr_y = sum(test_results["psnr_y"]) / len(test_results["psnr_y"])ave_ssim_y = sum(test_results["ssim_y"]) / len(test_results["ssim_y"])logger.info("----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n".format(ave_psnr_y, ave_ssim_y))logger.info("----average LPIPS\t: {:.6f}\n".format(ave_lpips))print(f"average test time: {np.mean(test_times):.4f}")

开头往log记录了相应配置文件内容,不需要可以注释。

遍历测试数据集(test_loaders)计算各种评价指标,如峰值信噪比(PSNR)、结构相似性(SSIM)和感知损失(LPIPS)。

在处理过程中,代码首先会创建一个目录来保存测试结果。

然后,对于每个测试图像,代码会加载对应的图像(如果可用),并使用一个名为clip_model的模型对图像进行编码。

接下来,代码会使用一个名为sde的随机微分方程模型和名为model的深度学习模型来处理带有噪声的图像,并生成复原图像(SR_img)。额可能作者拿了以前做超分的代码没改变量名

在这个过程中,text_contextimage_context被用作模型的输入,

图像都会被保存到之前创建的目录中。

此外,代码还会计算并记录每个图像的PSNR、SSIM和LPIPS分数,并在最后打印出这些分数的平均值。 代码中还包含了一些用于图像处理的实用函数,如util.tensor2img用于将张量转换为图像,util.save_img用于保存图像,以及util.calculate_psnrutil.calculate_ssim用于计算PSNR和SSIM分数。psnr_y和ssim_y 不用可以把相关代码注释。

最后,代码还计算了平均测试时间,并将其打印出来。

结果

log处理的单张图像报错的信息 0是该处理的图像排序序号,即正在处理第0张图

24-04-03 17:28:24.697 - INFO: img  0:_MG_2374_no_shadow - PSNR: 27.779773 dB; SSIM: 0.863140; LPIPS: 0.078669; PSNR_Y: 29.135256 dB; SSIM_Y: 0.869278.

 

可以给复原结果图加个后缀方便区分。

这篇关于【DA-CLIP】test.py解读,调用DA-CLIP和IRSDE模型复原计算复原图与GT图SSIM、PSNR、LPIPS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877402

相关文章

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Java调用DeepSeek API的8个高频坑与解决方法

《Java调用DeepSeekAPI的8个高频坑与解决方法》现在大模型开发特别火,DeepSeek因为中文理解好、反应快、还便宜,不少Java开发者都用它,本文整理了最常踩的8个坑,希望对... 目录引言一、坑 1:Token 过期未处理,鉴权异常引发服务中断问题本质典型错误代码解决方案:实现 Token

在C#中调用Windows防火墙界面的常见方式

《在C#中调用Windows防火墙界面的常见方式》在C#中调用Windows防火墙界面(基础设置或高级安全设置),可以使用进程启动(Process.Start)或Win32API来实现,所以本文给大家... 目录引言1. 直接启动防火墙界面(1) 打开基本防火墙设置(firewall.cpl)(2) 打开高

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

python调用dubbo接口的实现步骤

《python调用dubbo接口的实现步骤》本文主要介绍了python调用dubbo接口的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录 ​​其他实现方式与注意事项​​ ​​高级技巧与集成​​用 python 提供 Dubbo 接口

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

C# FTP调用的实现示例

《C#FTP调用的实现示例》本文介绍了.NET平台实现FTP/SFTP操作的多种方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 .NET 自带 FtpWebRequest 实现 FTP 操作1.1 文件上传1.2

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.