【MATLAB源码-第177期】基于matlab的蜘蛛蜂优化算法(SWO)无人机三维路径规划,输出做短路径图和适应度曲线

本文主要是介绍【MATLAB源码-第177期】基于matlab的蜘蛛蜂优化算法(SWO)无人机三维路径规划,输出做短路径图和适应度曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

蜘蛛蜂优化算法(Spider Wasp Optimization, SWO)是一种启发式算法,它受到自然界中蜘蛛和蜂这两种生物的行为模式启发而开发。这一算法主要模拟了蜘蛛捕食与蜂群社会行为之间的相互作用,用以解决优化问题。算法设计灵感来源于蜘蛛的捕食技巧和蜂群的社会结构,通过模拟这些自然界中的行为,SWO算法能有效地寻找到问题的全局最优解或近似解。接下来,我们将详细探讨SWO算法的背景、原理、步骤、特点以及在实际应用中的案例。

背景介绍

在自然界中,蜘蛛和蜂都是非常有趣的生物。蜘蛛以其独特的捕食方式而著名,它们会在树枝或其他结构上结网,等待猎物自投罗网。而蜂群则以其高度组织化的社会结构而闻名,蜜蜂能够通过复杂的舞蹈和其他信号进行沟通,共同寻找食物源和建设巢穴。这两种生物的这些行为为研究者提供了丰富的灵感,用以模拟其行为解决复杂的优化问题。

SWO算法原理

SWO算法的设计灵感来源于蜘蛛的捕食行为和蜂群的社会行为。算法中,蜘蛛代表问题的潜在解,而蜂群则代表对这些解的搜索和优化过程。算法通过模拟蜘蛛网中蜘蛛的位置更新(捕食行为)和蜂群寻找食物的行为,以达到优化问题解的目的。具体而言,蜘蛛的移动模拟了解的局部搜索过程,而蜂群的行为则模拟了全局搜索过程,结合这两种策略使得SWO算法能够有效地在解空间中进行搜索。

SWO算法步骤

  1. 初始化: 在解空间中随机生成一定数量的蜘蛛,每只蜘蛛代表一个潜在的解。
  2. 评估: 计算每只蜘蛛的适应度,即评估其代表的解对于优化问题的质量。
  3. 蜘蛛捕食(局部搜索): 根据蜘蛛的适应度,模拟蜘蛛的捕食行为,即对当前解进行局部优化。
  4. 蜂群搜索(全局搜索): 通过模拟蜂群的社会行为,对解空间进行全局搜索,以寻找更好的解。
  5. 更新: 结合蜘蛛捕食和蜂群搜索的结果,更新蜘蛛的位置,即更新潜在解。
  6. 迭代: 重复步骤2-5,直到满足停止条件,如达到最大迭代次数或解的质量满足要求。

SWO算法的特点

  • 全局与局部搜索结合: SWO算法结合了全局搜索和局部搜索两种策略,有效地平衡了探索(Exploration)和开发(Exploitation)之间的关系,提高了算法的搜索效率和解的质量。
  • 灵活性和适应性: 通过调整蜘蛛捕食和蜂群搜索的策略,SWO算法可以适应不同类型的优化问题。
  • 并行性: SWO算法中的蜘蛛和蜂群可以并行处理,适合大规模优化问题。

实际应用案例

SWO算法已被应用于多个领域的优化问题,如工程优化、路径规划、资源分配问题等。通过模拟自然界中蜘蛛和蜂的行为,SWO算法展现了良好的优化能力和潜力。

结论

蜘蛛蜂优化算法(SWO)是一种新型的启发式算法,它通过模拟蜘蛛的捕食行为和蜂群的社会行为,有效地解决了各类优化问题。算法的设计灵感来源于自然界中的生物,不仅展现了生物多样性的魅力,也提供了一种新的视角和方法,用于解决复杂的工程和科学问题。随着进一步的研究和开发,SWO算法有望在更多领域得到应用和发展。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第177期】基于matlab的蜘蛛蜂优化算法(SWO)无人机三维路径规划,输出做短路径图和适应度曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877103

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i