使用自己训练的superpoint与superglue模型进行图像配准

2024-04-04 21:36

本文主要是介绍使用自己训练的superpoint与superglue模型进行图像配准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于官方团队发布的预训练模型,使用SuperPoint与SuperGlue实现图像配准,可以参考https://blog.csdn.net/a486259/article/details/129093084

基于官方团队发布的代码训练自己的模型,可以参考https://blog.csdn.net/a486259/article/details/135425673进行实现,训练出的模型不能直接参考上述博客进行部署,为此发布使用代码。

本博文实现基于https://github.com/magicleap/SuperGluePretrainedNetwork进行改进。

1、已训练模型提取

1.1 superpoint模型

参考https://blog.csdn.net/a486259/article/details/135425673训练出的superpoint模型可以在logs目录中找到,具体如下所示。
在这里插入图片描述
使用以下代码,可以将训练出的superpoint模型参数提取出,保存为SuperGluePretrainedNetwork所需的格式,模型文件名为superpoint_v1.pth

>>> import torch
>>> m=torch.load("F:\OPEN_PROJECT\pytorch-superpoint-master\logs\superpoint_my_data\checkpoints\superPointNet_1611_checkpoint.pth.tar")    
>>> m_dict=m["model_state_dict"]
>>> torch.save(m_dict,"superpoint_v1.pth")

代码执行效果如下所示
在这里插入图片描述

1.2 superglue模型

参考https://blog.csdn.net/a486259/article/details/135425673训练出的SuperGlue模型存储路径如下所示,将目标模型复制一份,重命名为superglue_outdoor.pth
在这里插入图片描述

2、SuperGluePretrainedNetwork修改

2.1 代码修改

SuperGluePretrainedNetwork代码修改完全参考https://blog.csdn.net/a486259/article/details/129093084?中章节1、前置操作进行修改

2.2 创建SPSG

这个与2.1章节中链接的博客操作是一模一样的。

import torch
from superglue import SuperGlue
from superpoint import SuperPoint
import torch
import torch.nn as nn
import torch.nn.functional as F
class SPSG(nn.Module):#def __init__(self):super(SPSG, self).__init__()self.sp_model = SuperPoint({'max_keypoints':700})self.sg_model = SuperGlue({'weights': 'outdoor'})def forward(self,x1,x2):keypoints1,scores1,descriptors1=self.sp_model(x1)keypoints2,scores2,descriptors2=self.sp_model(x2)#print(scores1.shape,keypoints1.shape,descriptors1.shape)#example=(descriptors1.unsqueeze(0),descriptors2.unsqueeze(0),keypoints1.unsqueeze(0),keypoints2.unsqueeze(0),scores1.unsqueeze(0),scores2.unsqueeze(0))example=(descriptors1,descriptors2,keypoints1,keypoints2,scores1,scores2)indices0,  indices1,  mscores0,  mscores1=self.sg_model(*example)#return indices0,  indices1,  mscores0,  mscores1matches = indices0[0]valid = torch.nonzero(matches > -1).squeeze().detach()mkpts0 = keypoints1[0].index_select(0, valid);mkpts1 = keypoints2[0].index_select(0, matches.index_select(0, valid));confidence = mscores0[0].index_select(0, valid);return mkpts0, mkpts1, confidence

2.3 替换预训练模型

使用章节一种生成的superglue_outdoor.pth与superpoint_v1.pth替换掉原有的模型,具体如下所示
在这里插入图片描述

3、对自己的数据进行配准

使用以下代码,可以基于自行训练的模型对自己的数据进行配准。

进行图像读取、图像显示操作的代码被封装为imgutils库,具体可以查阅https://hpg123.blog.csdn.net/article/details/124824892

from imgutils import *
import torch
from SPSG import SPSG
model=SPSG().to('cuda')
tensor2a,img2a=read_img_as_tensor(r"potato\a (1).jpg",(320,320),device='cuda')
tensor2b,img2b=read_img_as_tensor(r"potato\a (2).jpg",(320,320),device='cuda')
print(tensor2a.shape)
mkpts0, mkpts1, confidence=model(tensor2a,tensor2b)
#myimshows( [img2a,img2b],size=12)import cv2 as cv
pt_num = mkpts0.shape[0]
im_dst,im_res=img2a,img2b
img = np.zeros((max(im_dst.shape[0], im_res.shape[0]), im_dst.shape[1]+im_res.shape[1]+10,3))
img[:,:im_res.shape[0],]=im_dst
img[:,-im_res.shape[0]:]=im_res
img=img.astype(np.uint8)
match_threshold=0.6
for i in range(0, pt_num):if (confidence[i] > match_threshold):pt0 = mkpts0[i].to('cpu').numpy().astype(np.int32)pt1 = mkpts1[i].to('cpu').numpy().astype(np.int32)#cv.circle(img, (pt0[0], pt0[1]), 1, (0, 0, 255), 2)#cv.circle(img, (pt1[0], pt1[1]+650), (0, 0, 255), 2)cv.line(img, pt0, (pt1[0]+im_res.shape[0], pt1[1]), (0, 255, 0), 1)
myimshow( img,size=12)import cv2
def getGoodMatchPoint(mkpts0, mkpts1, confidence,  match_threshold:float=0.5):n = min(mkpts0.size(0), mkpts1.size(0))srcImage1_matchedKPs, srcImage2_matchedKPs=[],[]if (match_threshold > 1 or match_threshold < 0):print("match_threshold error!")for i in range(n):kp0 = mkpts0[i]kp1 = mkpts1[i]pt0=(kp0[0].item(),kp0[1].item());pt1=(kp1[0].item(),kp1[1].item());c = confidence[i].item();if (c > match_threshold):srcImage1_matchedKPs.append(pt0);srcImage2_matchedKPs.append(pt1);return np.array(srcImage1_matchedKPs),np.array(srcImage2_matchedKPs)
pts_src, pts_dst=getGoodMatchPoint(mkpts0, mkpts1, confidence)h1, status = cv2.findHomography(pts_src, pts_dst, cv.RANSAC, 8)
im_out1 = cv2.warpPerspective(im_dst, h1, (im_dst.shape[1],im_dst.shape[0]))
im_out2 = cv2.warpPerspective(im_res, h1, (im_dst.shape[1],im_dst.shape[0]),16)
#这里 im_res和im_out1是严格配准的状态
myimshowsCL([im_dst,im_out1,im_res,im_out2],rows=2,cols=2, size=6)

代码、数据、模型的关系如下所示
在这里插入图片描述
代码运行效果如下所示
在这里插入图片描述
在这里插入图片描述

这篇关于使用自己训练的superpoint与superglue模型进行图像配准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876871

相关文章

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#