算法沉淀——动态规划篇(子数组系列问题(下))

2024-04-04 21:20

本文主要是介绍算法沉淀——动态规划篇(子数组系列问题(下)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀——动态规划篇(子数组系列问题(下))

  • 前言
  • 一、等差数列划分
  • 二、最长湍流子数组
  • 三、单词拆分
  • 四、环绕字符串中唯一的子字符串

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、等差数列划分

【题目】:413. 等差数列划分
【题目】:

 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
 给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)

【示例】:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

【分析】:
 我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析

状态转移方程推导:

  1. 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即dp[i] = 0;
  2. 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为dp[i-1] -dp[i-2]。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;

细节处理:
 显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。

【代码编写】:

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n = nums.size();vector<int> dp(n);int ret = 0;for(int i = 2; i < n; i++){if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])dp[i] = dp[i - 1] + 1;ret += dp[i];//累加所有结果}return ret;}
};

二、最长湍流子数组

【题目链接】:978. 最长湍流子数组
【题目】:

 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
 更正式地来说,当 arr 的子数组 A[i], A[i+1], …, A[j] 满足仅满足下列条件时,我们称其为湍流子数组:
若 i <= k < j :当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j :当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。

【示例】:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

【分析】:
 我们定义f[i]表示以i位置为结尾,并且最后是“上升”趋势的最长湍流子数组大小;g[i]表示以i位置为结尾,并且最后是“下降”趋势的最长湍流子数组大小。

状态转移方程推导:
 此时以i为结尾的湍流子数组长度可能为1,或大于1。具体如下:

在这里插入图片描述

在这里插入图片描述
特殊处理:
 以i为结尾的湍流子数组中,不管最后一步是呈上升趋势还是下降趋势,最小长度一定为1,即nums[i]本身。所以我们在创建f和g表时,可以将初始值设为1。后续填表过程中,仅需考虑子数组长度大于1的情况即可!!

【代码编写】:

class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n = arr.size();vector<int> f(n, 1), g(n, 1);int ret = 1;for(int i = 1; i < n; i++){if(arr[i] > arr[i - 1])f[i] = g[i - 1] + 1;else if(arr[i] < arr[i - 1])g[i] = f[i - 1] + 1;ret = max(ret, max(f[i], g[i]));}return ret;}
};

三、单词拆分

【题目链接】:139. 单词拆分
【题目】:

 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

【示例】:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的子字符串是否能单词拆分。

状态转移方程推导:

 要判断从下标从0到i的子串是否能单词拆分。我们可以将0到i的字串分为两部分:0到j-1,j到i(0 <= j <= i)。而dp[j-1]表示以j-1位置为结尾的字串能否单词拆分的结果。此时我们还需判断下标从j到i的字串是否能单词拆分。此时即可判断此种分发是否能实现单词拆分!!
 但由于j的位置不确定。所以我们可以一次将j从开始,逐渐减小到起始下标0。在每次递减过程中,只有存在一种拆分发将拆分出的两个字串都能实现拆分单词,此时dp[i]=true,同时可停止遍历。否则为false;

在这里插入图片描述
细节处理:
 在填dp表过程中,dp[i]的值会用到dp[j-1](0<=j<=i),可能会发生越界访问。所以我们为dp表额外增加一个空间,同时为了保证后续填表的正确性,我们需要将dp[0]初始化为true。
 同时面对字符串问题时,通常需要存在子字符窜问题。此时,下标映射关系可能+1,可能减1。所以这里个原始字符串最开始任意增加一个字符(习惯上该字符为空字符),让原始字符串下标统一向后移动一位。
【代码编写】:

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {unordered_map<string, int> hash;for(auto& str : wordDict)//后续快速查找是否存在某单词hash[str]++;int n = s.size();vector<bool> dp(n + 1);dp[0] = true;//初始化,保证后续填表正确s = ' ' + s;//让s下标集体向后移动一位for(int i = 1; i <= n; i++)for(int j = i; j >= 1; j--){if(dp[j - 1] && hash.count(s.substr(j, i - j + 1))){dp[i] = true;break;}}return dp[n];}
};

四、环绕字符串中唯一的子字符串

【题目链接】:467. 环绕字符串中唯一的子字符串
【题目】:

【代码编写】:

 定义字符串 base 为一个 “abcdefghijklmnopqrstuvwxyz” 无限环绕的字符串,所以 base 看起来是这样的:

  • “…zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd…”。
    给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

【示例】:

输入:s = “zab”
输出:6
解释:字符串 s 有六个子字符串 (“z”, “a”, “b”, “za”, “ab”, and “zab”) 在 base 中出现。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的字符串中非空字串在base中出现的个数。

状态转移方程推导:
 非空字串存在于base中有两种可能:

  1. 相邻字符是连续的,即s[i-1] + 1 == s[i]
  2. 相邻字符分别是26个小写字母的结束和开始,即是bashs[i-1] == 'z' && s[i] == 'a'
    所以状态转移方程为:
if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;

细节处理:
 由于当个字符一定存在于base中,所以dp[i]的值最小为1,所以我们可以将dp表中的初始值全部初始化为1。

 上述dp表中的结果存在重复值,不能直接累加。那如何去重?

  • 我们知道以某一个字符为结尾的子串中,长子串一定包含了短子串的所有结果。所以我们可以借助一个26空间大小的数组,将s分割出的字串中,以结尾字符为依据,将最长字串结果放入对应的数组空间中。从而实现去重效果。即:hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
     既然以及去重了,最后只需将数组中的结果累加即可!!


【代码编写】:

class Solution {
public:int findSubstringInWraproundString(string s) {int n = s.size();vector<int> dp(n, 1);for(int i = 1; i < n; i++)if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;int hash[26] = {0};for(int i = 0; i < n; i++)//去重hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);int ret = 0;for(auto x : hash)ret += x;return ret;}
};

这篇关于算法沉淀——动态规划篇(子数组系列问题(下))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876853

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交