算法沉淀——动态规划篇(子数组系列问题(下))

2024-04-04 21:20

本文主要是介绍算法沉淀——动态规划篇(子数组系列问题(下)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀——动态规划篇(子数组系列问题(下))

  • 前言
  • 一、等差数列划分
  • 二、最长湍流子数组
  • 三、单词拆分
  • 四、环绕字符串中唯一的子字符串

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、等差数列划分

【题目】:413. 等差数列划分
【题目】:

 如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。
 给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。(子数组 是数组中的一个连续序列)

【示例】:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

【分析】:
 我们可以定义dp[i]表示以i为结尾,等差数组的子数组个数。之后我们可以通过判断(nums[i]、nums[i-1]、nums[i-2])是否构成等差数列,来进一步分析

状态转移方程推导:

  1. 如果nums[i]、nums[i-1]、nums[i-2]不构成等差数列,显然此时以i为结尾的等差数组的子数组个数为0。即dp[i] = 0;
  2. 如果构成等差数列,此时dp[i]的值至少为1。此时我们还需加上dp[i-1]的值。原因在于如果以i-1为结尾的等差数列存在,此时该等差数列公差为dp[i-1] -dp[i-2]。同时nums[i]、nums[i-1]、nums[i-2]构成等差数列,公差也为dp[i-1] -dp[i-2]。这也意味着,以i-1为结尾的所有等差数列,在添加新增nums[i]元素后,依然是等差数列。所以状态转移方程为dp[i] = dp[i - 1] + 1;

细节处理:
 显然当i为1、2时,状态转移方程不适用。我们由于dp[0]、dp[1]一定构不成等差数列,所以我们可以先将dp[0]、dp[1]先初始化为0,在从下标2开始,从左往右填表。

【代码编写】:

class Solution {
public:int numberOfArithmeticSlices(vector<int>& nums) {int n = nums.size();vector<int> dp(n);int ret = 0;for(int i = 2; i < n; i++){if(nums[i] - nums[i - 1] == nums[i - 1] - nums[i - 2])dp[i] = dp[i - 1] + 1;ret += dp[i];//累加所有结果}return ret;}
};

二、最长湍流子数组

【题目链接】:978. 最长湍流子数组
【题目】:

 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。
 更正式地来说,当 arr 的子数组 A[i], A[i+1], …, A[j] 满足仅满足下列条件时,我们称其为湍流子数组:
若 i <= k < j :当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j :当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。

【示例】:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

【分析】:
 我们定义f[i]表示以i位置为结尾,并且最后是“上升”趋势的最长湍流子数组大小;g[i]表示以i位置为结尾,并且最后是“下降”趋势的最长湍流子数组大小。

状态转移方程推导:
 此时以i为结尾的湍流子数组长度可能为1,或大于1。具体如下:

在这里插入图片描述

在这里插入图片描述
特殊处理:
 以i为结尾的湍流子数组中,不管最后一步是呈上升趋势还是下降趋势,最小长度一定为1,即nums[i]本身。所以我们在创建f和g表时,可以将初始值设为1。后续填表过程中,仅需考虑子数组长度大于1的情况即可!!

【代码编写】:

class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n = arr.size();vector<int> f(n, 1), g(n, 1);int ret = 1;for(int i = 1; i < n; i++){if(arr[i] > arr[i - 1])f[i] = g[i - 1] + 1;else if(arr[i] < arr[i - 1])g[i] = f[i - 1] + 1;ret = max(ret, max(f[i], g[i]));}return ret;}
};

三、单词拆分

【题目链接】:139. 单词拆分
【题目】:

 给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true。
 注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

【示例】:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的子字符串是否能单词拆分。

状态转移方程推导:

 要判断从下标从0到i的子串是否能单词拆分。我们可以将0到i的字串分为两部分:0到j-1,j到i(0 <= j <= i)。而dp[j-1]表示以j-1位置为结尾的字串能否单词拆分的结果。此时我们还需判断下标从j到i的字串是否能单词拆分。此时即可判断此种分发是否能实现单词拆分!!
 但由于j的位置不确定。所以我们可以一次将j从开始,逐渐减小到起始下标0。在每次递减过程中,只有存在一种拆分发将拆分出的两个字串都能实现拆分单词,此时dp[i]=true,同时可停止遍历。否则为false;

在这里插入图片描述
细节处理:
 在填dp表过程中,dp[i]的值会用到dp[j-1](0<=j<=i),可能会发生越界访问。所以我们为dp表额外增加一个空间,同时为了保证后续填表的正确性,我们需要将dp[0]初始化为true。
 同时面对字符串问题时,通常需要存在子字符窜问题。此时,下标映射关系可能+1,可能减1。所以这里个原始字符串最开始任意增加一个字符(习惯上该字符为空字符),让原始字符串下标统一向后移动一位。
【代码编写】:

class Solution {
public:bool wordBreak(string s, vector<string>& wordDict) {unordered_map<string, int> hash;for(auto& str : wordDict)//后续快速查找是否存在某单词hash[str]++;int n = s.size();vector<bool> dp(n + 1);dp[0] = true;//初始化,保证后续填表正确s = ' ' + s;//让s下标集体向后移动一位for(int i = 1; i <= n; i++)for(int j = i; j >= 1; j--){if(dp[j - 1] && hash.count(s.substr(j, i - j + 1))){dp[i] = true;break;}}return dp[n];}
};

四、环绕字符串中唯一的子字符串

【题目链接】:467. 环绕字符串中唯一的子字符串
【题目】:

【代码编写】:

 定义字符串 base 为一个 “abcdefghijklmnopqrstuvwxyz” 无限环绕的字符串,所以 base 看起来是这样的:

  • “…zabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcd…”。
    给你一个字符串 s ,请你统计并返回 s 中有多少 不同非空子串 也在 base 中出现。

【示例】:

输入:s = “zab”
输出:6
解释:字符串 s 有六个子字符串 (“z”, “a”, “b”, “za”, “ab”, and “zab”) 在 base 中出现。

【分析】:
 我们可以定义dp[i]表示以i位置为结尾的字符串中非空字串在base中出现的个数。

状态转移方程推导:
 非空字串存在于base中有两种可能:

  1. 相邻字符是连续的,即s[i-1] + 1 == s[i]
  2. 相邻字符分别是26个小写字母的结束和开始,即是bashs[i-1] == 'z' && s[i] == 'a'
    所以状态转移方程为:
if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;

细节处理:
 由于当个字符一定存在于base中,所以dp[i]的值最小为1,所以我们可以将dp表中的初始值全部初始化为1。

 上述dp表中的结果存在重复值,不能直接累加。那如何去重?

  • 我们知道以某一个字符为结尾的子串中,长子串一定包含了短子串的所有结果。所以我们可以借助一个26空间大小的数组,将s分割出的字串中,以结尾字符为依据,将最长字串结果放入对应的数组空间中。从而实现去重效果。即:hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);
     既然以及去重了,最后只需将数组中的结果累加即可!!


【代码编写】:

class Solution {
public:int findSubstringInWraproundString(string s) {int n = s.size();vector<int> dp(n, 1);for(int i = 1; i < n; i++)if((s[i] - s[i - 1] == 1) || (s[i - 1] == 'z' && s[i] == 'a'))dp[i] = dp[i - 1] + 1;int hash[26] = {0};for(int i = 0; i < n; i++)//去重hash[s[i] - 'a'] = max(hash[s[i] - 'a'], dp[i]);int ret = 0;for(auto x : hash)ret += x;return ret;}
};

这篇关于算法沉淀——动态规划篇(子数组系列问题(下))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876853

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py