Transformer学习: Transformer小模块学习--位置编码,多头自注意力,掩码矩阵

本文主要是介绍Transformer学习: Transformer小模块学习--位置编码,多头自注意力,掩码矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

Transformer学习

  • 1 位置编码模块
    • 1.1 PE代码
    • 1.2 测试PE
  • 2 多头自注意力模块
    • 2.1 多头自注意力代码
    • 2.2 测试多头注意力
  • 3 未来序列掩码矩阵

在这里插入图片描述

1 位置编码模块

P E ( p o s , 2 i ) = sin ⁡ ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i)=\sin(pos/10000^{2i/d_{\mathrm{model}}}) PE(pos,2i)=sin(pos/100002i/dmodel)

P E ( p o s , 2 i + 1 ) = cos ⁡ ( p o s / 1000 0 2 i / d m o d e l ) PE(pos,2i+1)=\cos(pos/10000^{2i/d_\mathrm{model}}) PE(pos,2i+1)=cos(pos/100002i/dmodel)

pos 是序列中每个对象的索引, p o s ∈ [ 0 , m a x s e q l e n ] pos\in [0,max_seq_len] pos[0,maxseqlen], i i i 向量维度序号, i ∈ [ 0 , e m b e d d i m / 2 ] i\in [0,embed_dim/2] i[0,embeddim/2], d m o d e l d_{model} dmodel是模型的embedding维度

1.1 PE代码

import numpy as np
import matplotlib.pyplot as plt
import math
import torch
import seaborn as snsdef get_pos_ecoding(max_seq_len,embed_dim):# 初始化位置矩阵 [max_seq_len,embed_dim]pe = torch.zeros(max_seq_len,embed_dim])position = torch.arange(0,max_seq_len).unsqueeze(1) # [max_seq_len,1]print("位置:", position,position.shape)div_term = torch.exp(torch.arange(0,embed_dim,2)*-(math.log(10000.0)/embed_dim))   # 除项维度为embed_dim的一半,因为对矩阵分奇数和偶数位置进行填充。pe[:,0::2] = torch.sin(position/div_term)pe[:,1::2] = torch.cos(position/div_term)return pe

1.2 测试PE

pe = get_pos_ecoding(8,4)
plt.figure(figsize=(8,8))
sns.heatmap(pe)
plt.title("Sinusoidal Function")
plt.xlabel("hidden dimension")
plt.ylabel("sequence length")

输出:
位置: tensor([[0],
[1],
[2],
[3],
[4],
[5],
[6],
[7]]) torch.Size([8, 1])
除项: tensor([1.0000, 0.0100]) torch.Size([2])
在这里插入图片描述

plt.figure(figsize=(8, 5))
plt.plot(positional_encoding[1:, 1], label="dimension 1")
plt.plot(positional_encoding[1:, 2], label="dimension 2")
plt.plot(positional_encoding[1:, 3], label="dimension 3")
plt.legend()
plt.xlabel("Sequence length")
plt.ylabel("Period of Positional Encoding")

在这里插入图片描述

2 多头自注意力模块

2.1 多头自注意力代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import copy# 复制网络,即使用几层网络就改变N的数量
# 如 4层线性层  clones(nn.Linear(model_dim,model_dim),4)
def clones(module, N):"Produce N identical layers."return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])# 计算注意力
def attention(q, k, v, mask=None, dropout=None):d_k = q.size(-1)scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)if mask is not None:scores = scores.masked_fill(mask == 0, -1e9)p_attn = F.softmax(scores, dim = -1)if dropout is not None:p_attn = dropout(p_attn)return torch.matmul(p_attn, v), p_attn# 计算多头注意力
class Multi_Head_Self_Att(nn.Module):def __init__(self,head,model_dim,dropout=0.1):super(Multi_Head_Self_Att,self).__init__()+assert model_dim % head == 0self.d_k = model_dim/headself.head = headself.linears = clones(nn.Linear(model_dim,model_dim),4)self.att = Noneself.dropout = nn.Dropout(p=dropout)def forward(self,q,k,v,mask=None):if mask is not None:mask = mask.unsqueeze(1)nbatches = q.size(0)# zip函数 将线性层与q,k,v分别对应(self.linears,q),(self.linears,k),(self.linears,v)# q,k,v [bs,-1,head,embed_dim/head]q,k,v = [l(x).view(nbatches,-1,int(self.head),int(self.d_k)).transpose(1,2) for l,x in zip(self.linears,(q,k,v))] # 返回计算注意力之后的值作为x和注意力分数x, self.attn = attention(q, k, v, mask=mask, dropout=self.dropout)x = x.transpose(1, 2).contiguous().view(nbatches, -1, int(self.head * self.d_k))return self.linears[-1](x),self.attn

2.2 测试多头注意力

# 模型参数
head = 4
model_dim = 128
seq_len = 10
dropout = 0.1# 生成示例输入
q = torch.randn(seq_len, model_dim)
k = torch.randn(seq_len, model_dim)
v = torch.randn(seq_len, model_dim)# 创建多头自注意力模块
att = Multi_Head_Self_Att(head, model_dim, dropout=dropout)# 运行模块
output,att = att(q, k, v)# 输出形状
print("Output shape:", output.shape)
print(att.shape())
sns.heatmap(att.squeeze().detach().cpu())

输出
Output shape: torch.Size([10, 1, 128])
torch.Size([10, 4, 1, 1])
在这里插入图片描述

3 未来序列掩码矩阵

作用: 防止泄露未来要预测的部分,掩码矩阵是一个除对角线的上三角矩阵
3.1 代码

def subsequent_mask(size):"Mask out subsequent positions."attn_shape = (1, size, size)subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')print("掩码矩阵:",subsequent_mask)return torch.from_numpy(subsequent_mask) == 0

测试掩码

plt.figure(figsize=(5,5))
print(subsequent_mask(8),subsequent_mask(8).shape)
plt.imshow(subsequent_mask(8)[0])

掩码矩阵:
[[[0 1 1 1 1 1 1 1]
[0 0 1 1 1 1 1 1]
[0 0 0 1 1 1 1 1]
[0 0 0 0 1 1 1 1]
[0 0 0 0 0 1 1 1]
[0 0 0 0 0 0 1 1]
[0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0]]]

tensor([[[ True, False, False, False, False, False, False, False],
[ True, True, False, False, False, False, False, False],
[ True, True, True, False, False, False, False, False],
[ True, True, True, True, False, False, False, False],
[ True, True, True, True, True, False, False, False],
[ True, True, True, True, True, True, False, False],
[ True, True, True, True, True, True, True, False],
[ True, True, True, True, True, True, True, True]]]) torch.Size([1, 8, 8])
在这里插入图片描述
紫色部分为添加掩码的部分

这篇关于Transformer学习: Transformer小模块学习--位置编码,多头自注意力,掩码矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876662

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

VSCode中C/C++编码乱码问题的两种解决方法

《VSCode中C/C++编码乱码问题的两种解决方法》在中国地区,Windows系统中的cmd和PowerShell默认编码是GBK,但VSCode默认使用UTF-8编码,这种编码不一致会导致在VSC... 目录问题方法一:通过 Code Runner 插件调整编码配置步骤方法二:在 PowerShell

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python利用自带模块实现屏幕像素高效操作

《Python利用自带模块实现屏幕像素高效操作》这篇文章主要为大家详细介绍了Python如何利用自带模块实现屏幕像素高效操作,文中的示例代码讲解详,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、获取屏幕放缩比例2、获取屏幕指定坐标处像素颜色3、一个简单的使用案例4、总结1、获取屏幕放缩比例from

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.