自然语言处理: 第二十一章大模型基底之llama2

2024-04-04 17:28

本文主要是介绍自然语言处理: 第二十一章大模型基底之llama2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章地址: LLaMA:OpenandEfficient Foundation Language Models

项目地址: meta-llama/llama: Inference code for Llama models (github.com)

前言

在LLaMa1的基础之上有兴趣的可以看看我上一篇博客自然语言处理: 第二十一章大模型基底之llama1。Meta 又继续推出了LLaMa2, 其分别由3个不同大小的权重模型分别是:7B,13B以及70B的版本。但是Meta AI 在LLaMa1中实践得到的经验后继续用在了LLaMa2上,LLaMa2的网络结构如图1,整体如同LLaMa1也是decoder-only based的transformer结构,整体由32个block构成,可以看出其整体结构基本与LLaMa1相似,比如说:

● 在LLaMa1的基础上,继续增加了40%的预训练数据。主要是清理了一些隐私数据和知识增强从而提高数据质量● 继续在每个block输入层中使用RMSNorm● 继续使用RoPE位置编码

在这里插入图片描述

图1. LLaMa2网络结构</center>

一. 改进

改进1: Grouped-query attention

在这里插入图片描述

图2. 自回归模型输出方式

介绍GQA之前,需要先给大家铺垫一下自回归模型的输出方式和KV cache的基本概念。如图2,是典型的decoder-only自回归模型的输出方式,所谓自回归模型就是利用自己输出的结果再作为输入再去输出(好像听着很拗口)。还是给大家举个例子吧: 我们用过LLaMa或者gpt这种自回归模型的时候都知道它输出好像都是一个一个字往外面蹦,并不是一次性生成了所有答案。这里其实就能看出其输出的机理,如下图,当我输入一二三四五给模型作为输入的时候,它第一次会多生成一个上字,然后再多输出的一个字的结果。重新作为输入继续给模型得到第二次输出山,依次类推。。。 直到模型得到 <eos> 这种特殊符号就会停止输出。

In  [1]: {prompt:"一二三四五,"}
Out [1]: 一二三四五,上In  [2]: 一二三四五,上
Out [2]: 一二三四五,上山In  [3]: 一二三四五,上山
Out [3]: 一二三四五,上山打In  [4]: 一二三四五,上山打
Out [4]: 一二三四五,上山打老In  [5]: 一二三四五,上山打老
Out [5]: 一二三四五,上山打老虎In  [6]:  一二三四五,上山打老虎
Out [6]:  一二三四五,上山打老虎<eos>

重复上面的过程,我们就不难发现,虽然答案只生成了5个字却经过了6次循环,比如说最早的prompt就重复了6次相同的矩阵计算,所以没必要在对之前的token进行Attention计算,这样就能节省大部分算力,由此K V Cache便是来解决这个问题的:通过将每次计算的K和V缓存下来,之后新的序列进来时只需要从KV Cache中读取之前的KV值即可,就不需要再去重复计算之前的KV了。

在这里插入图片描述

图3.MHA & GQA & MQA 机理 </center>

但是种KV cache方法虽然理论上能行得通,但是在实际应用中大量的数据缓存与硬件的通信能力有着极高的压力。所以GQA(grouped-query attention) 算法便从软件方面进行优化了。如图3是三种自注意力机制的的对比,其中GQA是LLaMa2的机制,而MQA 是LLaMa1的计算机制。那么为什么会从原始的NHA 转换到MQA 再转到GQA呢?

原始的 MHA(Multi-Head Attention),QKV 三部分有相同数量的头,且一一对应。每次做 Attention,head1 的 QKV 就做好自己运算就可以,输出时各个头加起来就行。而 MQA(Multi-query Attention) 则是,让 Q 仍然保持原来的头数,但 KV只有一个,相当于所有的 Q 头共享一组 K 和 V 头,所以叫做 Multi-Query 了。实验发现一般能提高 30%-40% 的计算性能,但是性能精度会有所降低。而GQA 通过分组一定头数共享一组KV,从而达到性能和计算中的一个trade-off,这样既不像MQA一样降低很多精度,也可以相比于NHA提高速度。



改进2:SiLu 激活函数

相比于SwiGLU函数,这里用了更加简单的SiLU函数(个人感觉应该是对比了SwiGLU性能差别不大)其公式如下:

在这里插入图片描述



二. 实验结果

如表1所示,Llama 2 模型优于 Llama 1 模型。特别是,与 Llama 1 65B 相比,Llama 2 70B 在 MMLU 和 BBH上的结果分别提高了≈5和≈8个点。Llama 2 7B 和 30B 模型在除代码基准外的所有类别上都优于相应大小的 MPT模型。对于 Falcon 模型,Llama 2 7B 和 34B 在所有类别的基准上都优于 Falcon 7B 和 40B 模型。

在这里插入图片描述

表1. 与开源模型性能对比

在这里插入图片描述

表2. 与闭源模型对比

此外,Llama 2 70B 模型优于所有开源模型。 除了开源模型,Meta 还将 Llama 2 70B 的结果与闭源模型进行了比较。如表2所示,Llama 2 70B 在 MMLU 和 GSM8K 上接近 GPT-3.5(OpenAI,2023),但在编码基准上有显著差距。Llama 2 70B 的结果在几乎所有基准上都与 PaLM(540B)相当或更好。但是,Llama 2 70B 与 GPT-4 和 PaLM-2-L 之间仍然存在很大的性能差距。

总结:

LLaMa系列是Meta公司开源的最强模型,尤其是llama2在推出的当时70B的模型基本吊打所有开源模型,荣登开源模型榜首的位置。两代llama2模型有着相同的地方,也有着许多改进点值得后续继续研究:

  1. 高质量数据集的重要性(广而精)
  2. RoPE提供了相对位置编码的解决方法
  3. GQA 替代NHA以及MQA 从而达到性能与速度的trade-off
  4. NMSNorm 以及 SiLu激活函数的改进

LLaMA系列模型以其高质量、可扩展性和灵活性,在NLP领域取得了显著的进展。通过不断的技术创新和优化,LLaMA模型在各种任务上展现了卓越的性能,成为了大型语言模型研究和应用的重要里程碑。随着模型参数规模的不断扩大和训练技术的不断进步,LLaMA系列模型将继续在自然语言处理领域发挥重要作用。

这篇关于自然语言处理: 第二十一章大模型基底之llama2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876405

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言