自然语言处理: 第二十一章大模型基底之llama2

2024-04-04 17:28

本文主要是介绍自然语言处理: 第二十一章大模型基底之llama2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章地址: LLaMA:OpenandEfficient Foundation Language Models

项目地址: meta-llama/llama: Inference code for Llama models (github.com)

前言

在LLaMa1的基础之上有兴趣的可以看看我上一篇博客自然语言处理: 第二十一章大模型基底之llama1。Meta 又继续推出了LLaMa2, 其分别由3个不同大小的权重模型分别是:7B,13B以及70B的版本。但是Meta AI 在LLaMa1中实践得到的经验后继续用在了LLaMa2上,LLaMa2的网络结构如图1,整体如同LLaMa1也是decoder-only based的transformer结构,整体由32个block构成,可以看出其整体结构基本与LLaMa1相似,比如说:

● 在LLaMa1的基础上,继续增加了40%的预训练数据。主要是清理了一些隐私数据和知识增强从而提高数据质量● 继续在每个block输入层中使用RMSNorm● 继续使用RoPE位置编码

在这里插入图片描述

图1. LLaMa2网络结构</center>

一. 改进

改进1: Grouped-query attention

在这里插入图片描述

图2. 自回归模型输出方式

介绍GQA之前,需要先给大家铺垫一下自回归模型的输出方式和KV cache的基本概念。如图2,是典型的decoder-only自回归模型的输出方式,所谓自回归模型就是利用自己输出的结果再作为输入再去输出(好像听着很拗口)。还是给大家举个例子吧: 我们用过LLaMa或者gpt这种自回归模型的时候都知道它输出好像都是一个一个字往外面蹦,并不是一次性生成了所有答案。这里其实就能看出其输出的机理,如下图,当我输入一二三四五给模型作为输入的时候,它第一次会多生成一个上字,然后再多输出的一个字的结果。重新作为输入继续给模型得到第二次输出山,依次类推。。。 直到模型得到 <eos> 这种特殊符号就会停止输出。

In  [1]: {prompt:"一二三四五,"}
Out [1]: 一二三四五,上In  [2]: 一二三四五,上
Out [2]: 一二三四五,上山In  [3]: 一二三四五,上山
Out [3]: 一二三四五,上山打In  [4]: 一二三四五,上山打
Out [4]: 一二三四五,上山打老In  [5]: 一二三四五,上山打老
Out [5]: 一二三四五,上山打老虎In  [6]:  一二三四五,上山打老虎
Out [6]:  一二三四五,上山打老虎<eos>

重复上面的过程,我们就不难发现,虽然答案只生成了5个字却经过了6次循环,比如说最早的prompt就重复了6次相同的矩阵计算,所以没必要在对之前的token进行Attention计算,这样就能节省大部分算力,由此K V Cache便是来解决这个问题的:通过将每次计算的K和V缓存下来,之后新的序列进来时只需要从KV Cache中读取之前的KV值即可,就不需要再去重复计算之前的KV了。

在这里插入图片描述

图3.MHA & GQA & MQA 机理 </center>

但是种KV cache方法虽然理论上能行得通,但是在实际应用中大量的数据缓存与硬件的通信能力有着极高的压力。所以GQA(grouped-query attention) 算法便从软件方面进行优化了。如图3是三种自注意力机制的的对比,其中GQA是LLaMa2的机制,而MQA 是LLaMa1的计算机制。那么为什么会从原始的NHA 转换到MQA 再转到GQA呢?

原始的 MHA(Multi-Head Attention),QKV 三部分有相同数量的头,且一一对应。每次做 Attention,head1 的 QKV 就做好自己运算就可以,输出时各个头加起来就行。而 MQA(Multi-query Attention) 则是,让 Q 仍然保持原来的头数,但 KV只有一个,相当于所有的 Q 头共享一组 K 和 V 头,所以叫做 Multi-Query 了。实验发现一般能提高 30%-40% 的计算性能,但是性能精度会有所降低。而GQA 通过分组一定头数共享一组KV,从而达到性能和计算中的一个trade-off,这样既不像MQA一样降低很多精度,也可以相比于NHA提高速度。



改进2:SiLu 激活函数

相比于SwiGLU函数,这里用了更加简单的SiLU函数(个人感觉应该是对比了SwiGLU性能差别不大)其公式如下:

在这里插入图片描述



二. 实验结果

如表1所示,Llama 2 模型优于 Llama 1 模型。特别是,与 Llama 1 65B 相比,Llama 2 70B 在 MMLU 和 BBH上的结果分别提高了≈5和≈8个点。Llama 2 7B 和 30B 模型在除代码基准外的所有类别上都优于相应大小的 MPT模型。对于 Falcon 模型,Llama 2 7B 和 34B 在所有类别的基准上都优于 Falcon 7B 和 40B 模型。

在这里插入图片描述

表1. 与开源模型性能对比

在这里插入图片描述

表2. 与闭源模型对比

此外,Llama 2 70B 模型优于所有开源模型。 除了开源模型,Meta 还将 Llama 2 70B 的结果与闭源模型进行了比较。如表2所示,Llama 2 70B 在 MMLU 和 GSM8K 上接近 GPT-3.5(OpenAI,2023),但在编码基准上有显著差距。Llama 2 70B 的结果在几乎所有基准上都与 PaLM(540B)相当或更好。但是,Llama 2 70B 与 GPT-4 和 PaLM-2-L 之间仍然存在很大的性能差距。

总结:

LLaMa系列是Meta公司开源的最强模型,尤其是llama2在推出的当时70B的模型基本吊打所有开源模型,荣登开源模型榜首的位置。两代llama2模型有着相同的地方,也有着许多改进点值得后续继续研究:

  1. 高质量数据集的重要性(广而精)
  2. RoPE提供了相对位置编码的解决方法
  3. GQA 替代NHA以及MQA 从而达到性能与速度的trade-off
  4. NMSNorm 以及 SiLu激活函数的改进

LLaMA系列模型以其高质量、可扩展性和灵活性,在NLP领域取得了显著的进展。通过不断的技术创新和优化,LLaMA模型在各种任务上展现了卓越的性能,成为了大型语言模型研究和应用的重要里程碑。随着模型参数规模的不断扩大和训练技术的不断进步,LLaMA系列模型将继续在自然语言处理领域发挥重要作用。

这篇关于自然语言处理: 第二十一章大模型基底之llama2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876405

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构