【树上倍增】【内向基环树】【 图论 】2836. 在传球游戏中最大化函数值

本文主要是介绍【树上倍增】【内向基环树】【 图论 】2836. 在传球游戏中最大化函数值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

树上倍增 内向基环树 图论

LeetCode2836. 在传球游戏中最大化函数值

给你一个长度为 n 下标从 0 开始的整数数组 receiver 和一个整数 k 。
总共有 n 名玩家,玩家 编号 互不相同,且为 [0, n - 1] 中的整数。这些玩家玩一个传球游戏,receiver[i] 表示编号为 i 的玩家会传球给编号为 receiver[i] 的玩家。玩家可以传球给自己,也就是说 receiver[i] 可能等于 i 。
你需要从 n 名玩家中选择一名玩家作为游戏开始时唯一手中有球的玩家,球会被传 恰好 k 次。
如果选择编号为 x 的玩家作为开始玩家,定义函数 f(x) 表示从编号为 x 的玩家开始,k 次传球内所有接触过球玩家的编号之 和 ,如果有玩家多次触球,则 累加多次 。换句话说, f(x) = x + receiver[x] + receiver[receiver[x]] + … + receiver(k)[x] 。
你的任务时选择开始玩家 x ,目的是 最大化 f(x) 。
请你返回函数的 最大值 。
注意:receiver 可能含有重复元素。
示例 1:

传递次数 传球者编号 接球者编号 x + 所有接球者编号
2
1 2 1 3
2 1 0 3
3 0 2 5
4 2 1 6

输入:receiver = [2,0,1], k = 4
输出:6
解释:上表展示了从编号为 x = 2 开始的游戏过程。
从表中可知,f(2) 等于 6 。
6 是能得到最大的函数值。
所以输出为 6 。
示例 2:

传递次数 传球者编号 接球者编号 x + 所有接球者编号
4
1 4 3 7
2 3 2 9
3 2 1 10

输入:receiver = [1,1,1,2,3], k = 3
输出:10
解释:上表展示了从编号为 x = 4 开始的游戏过程。
从表中可知,f(4) 等于 10 。
10 是能得到最大的函数值。
所以输出为 10 。

提示:

1 <= receiver.length == n <= 105
0 <= receiver[i] <= n - 1
1 <= k <= 1010

树上倍增

记录各节点传球一次的接受者和积分。
然后计算传球两次的接受者和积分。
⋯ \cdots 4 次 ⋯ \cdots
⋯ \cdots 8 次 ⋯ \cdots
⋮ \vdots

代码

核心代码

class CPow2
{
public:CPow2(vector<int>& receiver, long long k): m_c(receiver.size()){long long tmp = k;int iPow2 = 0;for( ; iPow2 <= 63;iPow2++ ){if ((1LL << iPow2) == tmp){break;}tmp &= ~(1LL << iPow2);}m_vParent.assign(iPow2 + 1, vector<int>(m_c));m_vSum.assign(iPow2 + 1, vector<long long>(m_c));for (int i = 0; i < m_c; i++){m_vParent[0][i] = receiver[i];m_vSum[0][i] =  receiver[i];}for (int j = 1; j <= iPow2; j++){for (int i = 0; i < m_c; i++){const int next = m_vParent[j - 1][i];m_vParent[j][i] = m_vParent[j - 1][next];m_vSum[j][i] = m_vSum[j-1][i] + m_vSum[j-1][next];}}}long long Query(int cur, long long k){long long ans = 0;for (int i = 0; i < m_vParent.size(); i++){if ((1LL << i) & k){ans += m_vSum[i][cur];cur = m_vParent[i][cur];}}return ans;}const int m_c;
protected:	vector<vector<int>> m_vParent;vector<vector<long long>> m_vSum;
};
class Solution {
public:long long getMaxFunctionValue(vector<int>& receiver, long long k) {CPow2 pow(receiver, k);long long llMax = 0;for (int i = 0; i < pow.m_c; i++){llMax = max(llMax, i+pow.Query(i, k));}return llMax;}
};

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> receiver; long long k;{Solution sln;receiver = { 1,0 }, k = 10000000000;auto res = sln.getMaxFunctionValue(receiver, k);Assert(5000000001, res);}{Solution sln;receiver = { 2, 0, 1 }, k = 4;auto res = sln.getMaxFunctionValue(receiver, k);Assert(6, res);}{Solution sln;receiver = { 1,1,1,2,3 }, k =3;auto res = sln.getMaxFunctionValue(receiver, k);Assert(10, res);}
}

2023年8月

class CCycle
{
public:
CCycle(vector& receiver):m_receiver(receiver),m_c(receiver.size())
{
}
void Init(const unordered_set& setNotCycle)
{
CalCycleDis(setNotCycle);
CalCycleNode();
}
long long CalScore(int begin, long long needNode)
{
const int iCycleHead = m_mNodeToCycleHead[begin];
const long long llCycleNum = needNode / m_mCycleNodes[iCycleHead].size();//需要走多少整圈
needNode %= m_mCycleNodes[iCycleHead].size();//不足一圈部分
const long long llCycleScore = m_vDisScoreToCycelHead[m_receiver[iCycleHead]].second;//完整一圈的分数
if (0 == needNode)
{
return llCycleScore * llCycleNum;
}
const int iNodeNumToHead = m_vDisScoreToCycelHead[begin].first+1;//当前点到环首,共经过多少个点
long long llRet = m_vDisScoreToCycelHead[begin].second;
if (needNode > iNodeNumToHead )
{//过了环首后,还需要继续
const int iSubBegin = m_mCycleNodes[iCycleHead][needNode - iNodeNumToHead+1];
llRet += llCycleScore - m_vDisScoreToCycelHead[iSubBegin].second ;
}
else if( needNode < iNodeNumToHead)
{//没到环首
const int index = (m_mCycleNodes[iCycleHead].size() - (iNodeNumToHead - needNode - 1)) % m_mCycleNodes[iCycleHead].size();
const int iSubBegin = m_mCycleNodes[iCycleHead][index];
llRet -= m_vDisScoreToCycelHead[iSubBegin].second;
}
return llRet + llCycleScore* llCycleNum;
}
protected:
void CalCycleNode()
{
for (const auto& head : m_setCycelHead)
{
m_mCycleNodes[head].emplace_back(head);
m_mNodeToCycleHead[head] = head;
for (auto next = m_receiver[head]; next != head; next = m_receiver[next])
{
m_mCycleNodes[head].emplace_back(next);
m_mNodeToCycleHead[next] = head;
}
}
}
void CalCycleDis(const unordered_set& setNotCycle)
{
//环上各点到环首(编号最小的点)的距离
m_vDisScoreToCycelHead.assign(m_c, std::make_pair(-1, -1));
for (int i = 0; i < m_c; i++)
{
if (setNotCycle.count(i))
{
continue;//非环
}
DFSHead(i, i);
}
}
std::pair<int, long long> DFSHead(int cur, int head)
{
if (-1 != m_vDisScoreToCycelHead[cur].first)
{
return m_vDisScoreToCycelHead[cur];
}
if (cur == head)
{
m_setCycelHead.emplace(head);
m_vDisScoreToCycelHead[cur] = std::make_pair(0, cur);
DFSHead(m_receiver[cur], head);
return m_vDisScoreToCycelHead[cur];
}
const auto [nextDis, nextScore] = DFSHead(m_receiver[cur], head);
return m_vDisScoreToCycelHead[cur] = std::make_pair(nextDis + 1, nextScore + cur);
}
vector<std::pair<int, long long>> m_vDisScoreToCycelHead;//环上个点到环首(编号最小): 距离 和 分数(包括当前点、环首)
unordered_set m_setCycelHead;//环首
unordered_map<int, vector> m_mCycleNodes;//环上各点(按顺序存储)
unordered_map<int, int> m_mNodeToCycleHead;//各点对应环首
const int m_c;
const vector& m_receiver;
};

class Solution {
public:
long long getMaxFunctionValue(vector& receiver, long long k) {
m_c = receiver.size();
m_receiver = receiver;
k++;//点数比边数多1
//由于出度为1,所以没个联通区域只有一个环
//由于点数等于边数,故每个联通区域必定有一个环
//由于出度为1,所以进入环后,就只能在环上循环
//计算入度
vector vInDeg(m_c);
for (const auto& n : receiver)
{
vInDeg[n]++;
}
queue que;
for (int i = 0; i < m_c; i++)
{
if (0 == vInDeg[i])
{
m_setInDeg0.emplace(i);
que.emplace(i);
}
}
//通过拓扑排序判断那些点时环上
while (que.size()) {
const int cur = que.front();
que.pop();
m_setNotCycle.emplace(cur);
const int next = receiver[cur];
vInDeg[next]–;
if (0 == vInDeg[next])
{
que.emplace(next);
}
}

	//求各点到环上的次数,及距离m_vDisScoreToCycle.assign(m_c, std::make_tuple(- 1,-1,-1));for (int i = 0; i < m_c; i++){dfs(i);}m_vRet.assign(m_c,-1);CCycle cycle(receiver);cycle.Init(m_setNotCycle);//处理整个路径都在环上for (int i = 0; i < m_c; i++){if (m_setNotCycle.count(i)){continue;}		m_vRet[i] = cycle.CalScore(i, k);}//处理整个路径不在环上的点for (const auto cur : m_setInDeg0){dfsLen(cur, k);}//非环开始,环结束for (int i = 0; i < m_c; i++){if (-1 != m_vRet[i]){continue;}m_vRet[i] = get<1>(m_vDisScoreToCycle[i]) + cycle.CalScore(get<2>(m_vDisScoreToCycle[i]), k - get<0>(m_vDisScoreToCycle[i]));}return *std::max_element(m_vRet.begin(),m_vRet.end());
}
void dfsLen(int cur, const long long llNeedNode)
{	if (get<0>(m_vDisScoreToCycle[cur]) < llNeedNode){return ;}long llScoer = 0;int r = cur;for(int i = 0 ; i < llNeedNode;i++ ){llScoer += r;r = m_receiver[r];}m_vRet[cur] = llScoer;while (get<0>(m_vDisScoreToCycle[m_receiver[cur]]) >= llNeedNode){llScoer += r - cur;cur= m_receiver[cur];r = m_receiver[r];m_vRet[cur] = llScoer;}		
}
std::tuple<int,long long,int> dfs(int cur)
{auto& curRes = m_vDisScoreToCycle[cur];if (-1 != get<0>(curRes)){return curRes;}if (!m_setNotCycle.count(cur)){return curRes = std::make_tuple(0,0,cur);}	auto [iDis,iScore,iCycle] = dfs(m_receiver[cur]);return curRes = std::make_tuple(iDis+1,iScore+cur, iCycle);
}		
std::unordered_set<int> m_setNotCycle,m_setInDeg0;//非环上点; 入度为0的点
vector<tuple<int,long long,int>> m_vDisScoreToCycle;
std::unordered_map<int, int> m_mNodeToCycle;
vector<long long> m_vRet;
int  m_c;
vector<int> m_receiver;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【树上倍增】【内向基环树】【 图论 】2836. 在传球游戏中最大化函数值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875897

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

国产游戏崛起:技术革新与文化自信的双重推动

近年来,国产游戏行业发展迅猛,技术水平和作品质量均得到了显著提升。特别是以《黑神话:悟空》为代表的一系列优秀作品,成功打破了过去中国游戏市场以手游和网游为主的局限,向全球玩家展示了中国在单机游戏领域的实力与潜力。随着中国开发者在画面渲染、物理引擎、AI 技术和服务器架构等方面取得了显著进展,国产游戏正逐步赢得国际市场的认可。然而,面对全球游戏行业的激烈竞争,国产游戏技术依然面临诸多挑战,未来的

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

火柴游戏java版

代码 /*** 火柴游戏* <p>* <li>有24根火柴</li>* <li>组成 A + B = C 等式</li>* <li>总共有多少种适合方式?</li>* <br>* <h>分析:</h>* <li>除去"+"、"="四根,最多可用火柴根数20根。</li>* <li>全部用两根组合成"1",最大数值为1111。使用枚举法,A和B范围在0~1111,C为A+B。判断</li>** @