【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)

本文主要是介绍【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【491.递增子序列】中等题

【46.全排列】中等题

【47.全排列 II】中等题


【491.递增子序列】中等题

思路:

1、处理当前节点

  • 如果到当前节点的路径长度为1或者为0,直接遍历访问子节点即可
  • 如果到当前节点的路径长度大于/等于2,则判断是否递增
    • 如果递增,则记录路径
    • 如果不是递增,则不记录路径,不访问子节点,直接返回

2、遍历子节点

  • 在for循环遍历前,定义Set对象,用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)。
  • 在for循环遍历时,如果当前层前面出现过相同值的子节点,就不遍历该子节点,跳过。

难点:需要【判断子序列是否递增】和【考虑如何去重】

相似题目:【90.子集II】,但90题可以排序,通过与前一个子节点比较即可去重,而491题的结果与数组的元素顺序有关,不能排序,否则结果必错,所以需要使用额外的空间记录访问过的子节点。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return res;}public void backtracking(int[] nums, int start){// 如果到当前节点的路径长度大于/等于2,则判断是否递增(路径长度为1或者为0,直接遍历访问子节点即可)if (path.size() >= 2){// 如果递增,则记录路径if (path.get(path.size() - 1) >= path.get(path.size() - 2)) res.add(new ArrayList(path));// 如果不是递增,则不记录路径,不访问子节点,直接返回else return;}// 用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)Set<Integer> set = new HashSet<>();for (int i = start; i < nums.length; i++){// 如果当前层前面出现过,就不遍历该子节点,跳过if (!set.isEmpty() && set.contains(nums[i])) continue; set.add(nums[i]);path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}


【46.全排列】中等题

思路:

在遍历子节点的时候,先判断路径中是否已经包含想遍历的子节点,如果包含就不再遍历该子节点。

反思:

一开始自己实现的时候,使用了额外的Set对象记录访问过的节点,但是其实没有必要,因为额外Set对象做的事情和路径path变量做的事情一样,直接用path变量判断即可。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {backtracking(nums);return res;}public void backtracking(int[] nums){// 终止条件(如果路径长度和数组长度一样,证明已经排列完毕,将路径记录到res中)if (path.size() == nums.length) {res.add(new ArrayList(path));return;}// 遍历子节点for (int i = 0; i < nums.length; i++){// 如果路径中已经遍历过这个节点,就不再遍历if (path.contains(nums[i])) continue;path.add(nums[i]);backtracking(nums);path.remove(path.size() - 1);}}
}


【47.全排列 II】中等题

思路:和【46.全排列】的区别在于,数组中的元素是可以重复的。

  • 考虑树的纵向递归:要保证每个重复的元素都能用上,需要使用used数组记录元素的使用情况,而不能用简单的contains(存在重复元素,直接使用contains不合理)。
  • 考虑树的横向遍历:如果当前子节点前面遍历过,则得跳过当前子节点,因此需要用额外的Set对象记录当前层遍历过的子节点。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}Set<Integer> set = new HashSet<>(); // 用于记录当前层遍历过的子节点for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 这里没有排序后直接和上一个元素比较,是因为上一个元素可能不是同一层的子节点if (set.contains(nums[i])) continue;  set.add(nums[i]); // 记录当前层遍历过的子节点used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

优化:不使用额外的空间记录当前层遍历过的子节点

  • 问题:如果直接将nums先排序,再在递归for循环的时候,直接判断当前子节点是否与上一个子节点相同,这时无法保证上一个节点是当前层遍历过的子节点还是上层遍历过的节点。
  • 方案:需要在判断时,确保上个位置的元素是当前层的子节点,才能跳过。如果当前子节点和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {Arrays.sort(nums);boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 如果和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过if (i > 0 && nums[i] == nums[i-1] && used[i-1] == false) continue;used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

总结:更加建议只使用used数组,而不用Set对象。

  • 原因1:不需要使用额外的空间
  • 原因2:不排序的去重有时候不一定完全能去重,存在风险,例如:例子。

这篇关于【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875305

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外