【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)

本文主要是介绍【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【491.递增子序列】中等题

【46.全排列】中等题

【47.全排列 II】中等题


【491.递增子序列】中等题

思路:

1、处理当前节点

  • 如果到当前节点的路径长度为1或者为0,直接遍历访问子节点即可
  • 如果到当前节点的路径长度大于/等于2,则判断是否递增
    • 如果递增,则记录路径
    • 如果不是递增,则不记录路径,不访问子节点,直接返回

2、遍历子节点

  • 在for循环遍历前,定义Set对象,用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)。
  • 在for循环遍历时,如果当前层前面出现过相同值的子节点,就不遍历该子节点,跳过。

难点:需要【判断子序列是否递增】和【考虑如何去重】

相似题目:【90.子集II】,但90题可以排序,通过与前一个子节点比较即可去重,而491题的结果与数组的元素顺序有关,不能排序,否则结果必错,所以需要使用额外的空间记录访问过的子节点。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return res;}public void backtracking(int[] nums, int start){// 如果到当前节点的路径长度大于/等于2,则判断是否递增(路径长度为1或者为0,直接遍历访问子节点即可)if (path.size() >= 2){// 如果递增,则记录路径if (path.get(path.size() - 1) >= path.get(path.size() - 2)) res.add(new ArrayList(path));// 如果不是递增,则不记录路径,不访问子节点,直接返回else return;}// 用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)Set<Integer> set = new HashSet<>();for (int i = start; i < nums.length; i++){// 如果当前层前面出现过,就不遍历该子节点,跳过if (!set.isEmpty() && set.contains(nums[i])) continue; set.add(nums[i]);path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}


【46.全排列】中等题

思路:

在遍历子节点的时候,先判断路径中是否已经包含想遍历的子节点,如果包含就不再遍历该子节点。

反思:

一开始自己实现的时候,使用了额外的Set对象记录访问过的节点,但是其实没有必要,因为额外Set对象做的事情和路径path变量做的事情一样,直接用path变量判断即可。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {backtracking(nums);return res;}public void backtracking(int[] nums){// 终止条件(如果路径长度和数组长度一样,证明已经排列完毕,将路径记录到res中)if (path.size() == nums.length) {res.add(new ArrayList(path));return;}// 遍历子节点for (int i = 0; i < nums.length; i++){// 如果路径中已经遍历过这个节点,就不再遍历if (path.contains(nums[i])) continue;path.add(nums[i]);backtracking(nums);path.remove(path.size() - 1);}}
}


【47.全排列 II】中等题

思路:和【46.全排列】的区别在于,数组中的元素是可以重复的。

  • 考虑树的纵向递归:要保证每个重复的元素都能用上,需要使用used数组记录元素的使用情况,而不能用简单的contains(存在重复元素,直接使用contains不合理)。
  • 考虑树的横向遍历:如果当前子节点前面遍历过,则得跳过当前子节点,因此需要用额外的Set对象记录当前层遍历过的子节点。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}Set<Integer> set = new HashSet<>(); // 用于记录当前层遍历过的子节点for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 这里没有排序后直接和上一个元素比较,是因为上一个元素可能不是同一层的子节点if (set.contains(nums[i])) continue;  set.add(nums[i]); // 记录当前层遍历过的子节点used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

优化:不使用额外的空间记录当前层遍历过的子节点

  • 问题:如果直接将nums先排序,再在递归for循环的时候,直接判断当前子节点是否与上一个子节点相同,这时无法保证上一个节点是当前层遍历过的子节点还是上层遍历过的节点。
  • 方案:需要在判断时,确保上个位置的元素是当前层的子节点,才能跳过。如果当前子节点和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {Arrays.sort(nums);boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 如果和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过if (i > 0 && nums[i] == nums[i-1] && used[i-1] == false) continue;used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

总结:更加建议只使用used数组,而不用Set对象。

  • 原因1:不需要使用额外的空间
  • 原因2:不排序的去重有时候不一定完全能去重,存在风险,例如:例子。

这篇关于【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875305

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum