【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)

本文主要是介绍【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【491.递增子序列】中等题

【46.全排列】中等题

【47.全排列 II】中等题


【491.递增子序列】中等题

思路:

1、处理当前节点

  • 如果到当前节点的路径长度为1或者为0,直接遍历访问子节点即可
  • 如果到当前节点的路径长度大于/等于2,则判断是否递增
    • 如果递增,则记录路径
    • 如果不是递增,则不记录路径,不访问子节点,直接返回

2、遍历子节点

  • 在for循环遍历前,定义Set对象,用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)。
  • 在for循环遍历时,如果当前层前面出现过相同值的子节点,就不遍历该子节点,跳过。

难点:需要【判断子序列是否递增】和【考虑如何去重】

相似题目:【90.子集II】,但90题可以排序,通过与前一个子节点比较即可去重,而491题的结果与数组的元素顺序有关,不能排序,否则结果必错,所以需要使用额外的空间记录访问过的子节点。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return res;}public void backtracking(int[] nums, int start){// 如果到当前节点的路径长度大于/等于2,则判断是否递增(路径长度为1或者为0,直接遍历访问子节点即可)if (path.size() >= 2){// 如果递增,则记录路径if (path.get(path.size() - 1) >= path.get(path.size() - 2)) res.add(new ArrayList(path));// 如果不是递增,则不记录路径,不访问子节点,直接返回else return;}// 用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)Set<Integer> set = new HashSet<>();for (int i = start; i < nums.length; i++){// 如果当前层前面出现过,就不遍历该子节点,跳过if (!set.isEmpty() && set.contains(nums[i])) continue; set.add(nums[i]);path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}


【46.全排列】中等题

思路:

在遍历子节点的时候,先判断路径中是否已经包含想遍历的子节点,如果包含就不再遍历该子节点。

反思:

一开始自己实现的时候,使用了额外的Set对象记录访问过的节点,但是其实没有必要,因为额外Set对象做的事情和路径path变量做的事情一样,直接用path变量判断即可。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {backtracking(nums);return res;}public void backtracking(int[] nums){// 终止条件(如果路径长度和数组长度一样,证明已经排列完毕,将路径记录到res中)if (path.size() == nums.length) {res.add(new ArrayList(path));return;}// 遍历子节点for (int i = 0; i < nums.length; i++){// 如果路径中已经遍历过这个节点,就不再遍历if (path.contains(nums[i])) continue;path.add(nums[i]);backtracking(nums);path.remove(path.size() - 1);}}
}


【47.全排列 II】中等题

思路:和【46.全排列】的区别在于,数组中的元素是可以重复的。

  • 考虑树的纵向递归:要保证每个重复的元素都能用上,需要使用used数组记录元素的使用情况,而不能用简单的contains(存在重复元素,直接使用contains不合理)。
  • 考虑树的横向遍历:如果当前子节点前面遍历过,则得跳过当前子节点,因此需要用额外的Set对象记录当前层遍历过的子节点。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}Set<Integer> set = new HashSet<>(); // 用于记录当前层遍历过的子节点for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 这里没有排序后直接和上一个元素比较,是因为上一个元素可能不是同一层的子节点if (set.contains(nums[i])) continue;  set.add(nums[i]); // 记录当前层遍历过的子节点used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

优化:不使用额外的空间记录当前层遍历过的子节点

  • 问题:如果直接将nums先排序,再在递归for循环的时候,直接判断当前子节点是否与上一个子节点相同,这时无法保证上一个节点是当前层遍历过的子节点还是上层遍历过的节点。
  • 方案:需要在判断时,确保上个位置的元素是当前层的子节点,才能跳过。如果当前子节点和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {Arrays.sort(nums);boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 如果和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过if (i > 0 && nums[i] == nums[i-1] && used[i-1] == false) continue;used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

总结:更加建议只使用used数组,而不用Set对象。

  • 原因1:不需要使用额外的空间
  • 原因2:不排序的去重有时候不一定完全能去重,存在风险,例如:例子。

这篇关于【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875305

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义