【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)

本文主要是介绍【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

【491.递增子序列】中等题

【46.全排列】中等题

【47.全排列 II】中等题


【491.递增子序列】中等题

思路:

1、处理当前节点

  • 如果到当前节点的路径长度为1或者为0,直接遍历访问子节点即可
  • 如果到当前节点的路径长度大于/等于2,则判断是否递增
    • 如果递增,则记录路径
    • 如果不是递增,则不记录路径,不访问子节点,直接返回

2、遍历子节点

  • 在for循环遍历前,定义Set对象,用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)。
  • 在for循环遍历时,如果当前层前面出现过相同值的子节点,就不遍历该子节点,跳过。

难点:需要【判断子序列是否递增】和【考虑如何去重】

相似题目:【90.子集II】,但90题可以排序,通过与前一个子节点比较即可去重,而491题的结果与数组的元素顺序有关,不能排序,否则结果必错,所以需要使用额外的空间记录访问过的子节点。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return res;}public void backtracking(int[] nums, int start){// 如果到当前节点的路径长度大于/等于2,则判断是否递增(路径长度为1或者为0,直接遍历访问子节点即可)if (path.size() >= 2){// 如果递增,则记录路径if (path.get(path.size() - 1) >= path.get(path.size() - 2)) res.add(new ArrayList(path));// 如果不是递增,则不记录路径,不访问子节点,直接返回else return;}// 用于记录当前层遍历过的子节点(注意:不能定义为全局变量,因为递归的时候会加入其它层的节点)Set<Integer> set = new HashSet<>();for (int i = start; i < nums.length; i++){// 如果当前层前面出现过,就不遍历该子节点,跳过if (!set.isEmpty() && set.contains(nums[i])) continue; set.add(nums[i]);path.add(nums[i]);backtracking(nums, i + 1);path.remove(path.size() - 1);}}
}


【46.全排列】中等题

思路:

在遍历子节点的时候,先判断路径中是否已经包含想遍历的子节点,如果包含就不再遍历该子节点。

反思:

一开始自己实现的时候,使用了额外的Set对象记录访问过的节点,但是其实没有必要,因为额外Set对象做的事情和路径path变量做的事情一样,直接用path变量判断即可。

class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {backtracking(nums);return res;}public void backtracking(int[] nums){// 终止条件(如果路径长度和数组长度一样,证明已经排列完毕,将路径记录到res中)if (path.size() == nums.length) {res.add(new ArrayList(path));return;}// 遍历子节点for (int i = 0; i < nums.length; i++){// 如果路径中已经遍历过这个节点,就不再遍历if (path.contains(nums[i])) continue;path.add(nums[i]);backtracking(nums);path.remove(path.size() - 1);}}
}


【47.全排列 II】中等题

思路:和【46.全排列】的区别在于,数组中的元素是可以重复的。

  • 考虑树的纵向递归:要保证每个重复的元素都能用上,需要使用used数组记录元素的使用情况,而不能用简单的contains(存在重复元素,直接使用contains不合理)。
  • 考虑树的横向遍历:如果当前子节点前面遍历过,则得跳过当前子节点,因此需要用额外的Set对象记录当前层遍历过的子节点。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}Set<Integer> set = new HashSet<>(); // 用于记录当前层遍历过的子节点for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 这里没有排序后直接和上一个元素比较,是因为上一个元素可能不是同一层的子节点if (set.contains(nums[i])) continue;  set.add(nums[i]); // 记录当前层遍历过的子节点used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

优化:不使用额外的空间记录当前层遍历过的子节点

  • 问题:如果直接将nums先排序,再在递归for循环的时候,直接判断当前子节点是否与上一个子节点相同,这时无法保证上一个节点是当前层遍历过的子节点还是上层遍历过的节点。
  • 方案:需要在判断时,确保上个位置的元素是当前层的子节点,才能跳过。如果当前子节点和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过。
class Solution {List<List<Integer>> res = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {Arrays.sort(nums);boolean[] used = new boolean[nums.length]; // 默认初始化值为falsebacktracking(nums, used);return res;}public void backtracking(int[] nums, boolean[] used){// 长度一样则完成排列,记录结果并返回if (path.size() == nums.length){res.add(new ArrayList(path));return;}for(int i = 0; i < nums.length; i++){if (used[i] == true) continue; // 如果上层已经用过了该元素,则跳过// 如果和上个位置元素的值相同,且上个位置的元素未出现在路径中(即上个位置的元素也是当前层已遍历过的子节点),则跳过if (i > 0 && nums[i] == nums[i-1] && used[i-1] == false) continue;used[i] = true;path.add(nums[i]);backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
}

总结:更加建议只使用used数组,而不用Set对象。

  • 原因1:不需要使用额外的空间
  • 原因2:不排序的去重有时候不一定完全能去重,存在风险,例如:例子。

这篇关于【力扣一刷】代码随想录day29(回溯算法part5:491.递增子序列、46.全排列、47.全排列 II)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875305

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.