Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview

本文主要是介绍Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理介绍

该人脸识别实例是一个基于深度学习和计算机视觉技术的应用,主要利用OpenCV和Python作为开发工具。系统采用了一系列算法和技术,其中包括以下几个关键步骤:

  1. 图像预处理:首先,对输入图像进行预处理,包括读取图片、将图片灰度转换、修改图片的尺寸、绘制矩形_圆等。这些预处理步骤有助于提高后续人脸检测的准确性和稳定性。

  2. 人脸检测:利用OpenCV中的人脸检测器,基于卷积神经网络的面部检测器,以侦测图像中可能存在的人脸区域。Haar级联分类器通过将图像区域与预先定义的特征模式进行比对来识别人脸。

  3. 特征提取:当检测到人脸区域后,系统会利用深度学习技术从这些区域中提取特征。

  4. 人脸识别:提取的人脸特征将与预先存储的人脸特征数据库进行比对和匹配。本实例中导入的haarcascade_frontalface_default.xml 是 OpenCV 中的一个经典的 Haar 级联分类器模型文件,用于人脸检测。Haar 级联分类器是一种基于 Haar 特征的目标检测方法,特别适用于检测具有特定形状的物体,如人脸等。该模型文件包含了经过训练的分类器,用于检测人脸正面的区域。它是通过大量的正样本和负样本数据进行训练,从而学习了人脸的特征和非人脸的特征,并生成了能够有效检测人脸的分类器。在使用 cv2.CascadeClassifier() 加载该模型文件后,可以用于检测输入图像中的人脸。通常,它可以在许多场景下进行人脸检测,但其效果可能会受到光照、角度、遮挡等因素的影响。

    这是opencv的人脸检测的XML文件

    在这里插入图片描述

​ 这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。它们各自的作用分别如下:

  • 人脸检测器(默认):haarcascade_frontalface_default.xml
  • 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
  • 人脸检测器(侧视):haarcascade_profileface.xml
  • 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
  • 眼部检测器(右眼):haarcascade_righteye_2splits.xml
  • 嘴部检测器:haarcascade_mcs_mouth.xml
  • 鼻子检测器:haarcascade_mcs_nose.xml
  • 身体检测器:haarcascade_fullbody.xml
  • 人脸检测器(快速 LBP):lbpcascade_frontalface.xml
  1. 结果显示:系统将识别出的人脸标识符与相应的数据库信息关联,并在图像上框出被识别的人脸区域。

二、结果展示

1.人脸检测

在这里插入图片描述

2.检测图片中的多个人脸

在这里插入图片描述

3.检测视屏中的人脸

因Typro不支持视屏播放,请观看压缩包中video文件夹下的“检测视屏中人脸.mp4”

三、系统评估指标

系统性能将通过以下指标进行评估:

  • 准确性:系统在不同图片和视频上的人脸识别准确率。
  • 速度:系统处理图像的速度,包括人脸检测、特征提取和识别的耗时。
  • 鲁棒性:系统对于光照变化、姿态变化和遮挡等方面的稳健性。

经过测试,本实例识别速度较快,但准确性和鲁棒性仍有待提高!

四、过程分析

系统构建的步骤包括:

  • 下载opencv模块:OpenCV 支持 python 的模块,直接使用 pip 进行安装,命令如下:

    pip install opencv-python

    此命令会下载最新的版本,如需下载别的版本,可在‘python’后添加版本号

  • 导入实例代码、测试图片

  • 获取 Haar 级联数据:在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。本实例主要运用haarcascade_frontalface_default.xml

  • 进行测试:得出静态图像中单个人脸和多个人脸的检测结果,以及动态视频中人脸的检测结果。

  • 模型测试和优化:利用测试结果对系统进行评估,并对模型进行调整和优化。

以上步骤是构建本人脸识别实例的关键步骤。

完整代码下载地址:Python基于深度学习的人脸识别项目源码+演示视频

这篇关于Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874873

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专