书生·浦语大模型InternLM-Chat-1.8B 智能对话 Demo 第二期

2024-04-04 01:28

本文主要是介绍书生·浦语大模型InternLM-Chat-1.8B 智能对话 Demo 第二期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • InternLM-Chat-1.8B 智能对话 Demo
    • 环境准备
    • 下载模型
    • 运行 InternLM-Chat-1.8B
  • web 运行八戒 demo
    • 下载模型
    • 执行Demo

InternLM-Chat-1.8B 智能对话 Demo

环境准备

  • 在InternStudio平台中选择 10% A100(1/4) 的配置(平台资源有限),如下图所示镜像选择 Cuda11.7-conda,如下图所示:
    在这里插入图片描述

  • 打开刚刚租用服务器的进入开发机,进入开发机后,在页面的左上角可以切换 JupyterLab、终端和 VScode
    在这里插入图片描述

在这里插入图片描述

  • 配置开发环境
    • 创建python=3.10.13,pytorch=2.0.1虚拟环境

      studio-conda -o internlm-base -t demo
      # 与 studio-conda 等效的配置方案
      # conda create -n demo python==3.10 -y
      # conda activate demo
      # conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia# 或者直接克隆一个pytorch=2.0.1的环境
      # conda create --name demo --clone=/root/share/conda_envs/internlm-base
      
    • 激活internlm-demo环境

      conda activate demo
      
    • 安装demo需要的依赖包

      # 升级pip
      python -m pip install --upgrade pippip install huggingface-hub==0.17.3
      pip install transformers==4.34 
      pip install psutil==5.9.8
      pip install accelerate==0.24.1
      pip install streamlit==1.32.2 
      pip install matplotlib==3.8.3 
      pip install modelscope==1.9.5
      pip install sentencepiece==0.1.99
      

下载模型

  • 按路径创建文件夹,并进入到对应文件目录中:

    mkdir -p /root/demo  # 在root文件夹下创建demo文件夹
    touch /root/demo/cli_demo.py  # 在demo文件夹下创建cli_demo.py文件
    touch /root/demo/download_mini.py  # 在demo文件夹下创建download_mini.py文件
    cd /root/demo  # 进入到demo文件夹下
    
  • 通过左侧文件夹栏目,双击进入 demo 文件夹
    在这里插入图片描述

  • 双击打开 /root/demo/download_mini.py 文件,复制以下代码:

    import os
    from modelscope.hub.snapshot_download import snapshot_download# 创建保存模型目录
    os.system("mkdir /root/models")# save_dir是模型保存到本地的目录
    save_dir="/root/models"snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b", cache_dir=save_dir, revision='v1.1.0')
  • 执行命令,下载模型参数文件:

    python /root/demo/download_mini.py
    

运行 InternLM-Chat-1.8B

  • 双击打开 /root/demo/cli_demo.py 文件,复制以下代码:

    import torch
    from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
    model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
    model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
    - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
    - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
    """messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("\nUser  >>> ")input_text = input_text.replace(' ', '')if input_text == "exit":breaklength = 0for response, _ in model.stream_chat(tokenizer, input_text, messages):if response is not None:print(response[length:], flush=True, end="")length = len(response)
  • 输入命令,执行 Demo 程序:

    conda activate demo
    python /root/demo/cli_demo.py
    
  • 运行效果
    在这里插入图片描述

web 运行八戒 demo

下载模型

  • 使用 git 命令来获得仓库内的 Demo 文件

    conda activate demo
    cd /root/
    git clone https://gitee.com/InternLM/Tutorial -b camp2
    # git clone https://github.com/InternLM/Tutorial -b camp2
    cd /root/Tutorial
    
  • 在Terminal中执行 bajie_download.py,下载模型

    python /root/Tutorial/helloworld/bajie_download.py
    

执行Demo

  • 端口映射到本地,在本地浏览器才可浏览

    • 在本地打开Power Shell终端,SSH公钥默认存储在 ~/.ssh/id_rsa.pub,可以通过系统自带的 cat 工具查看文件内容
      在这里插入图片描述

    • 将公钥复制到剪贴板中,然后回到 InternStudio 控制台,点击配置 SSH Key
      在这里插入图片描述

    • 将刚刚复制的公钥添加进入即可
      在这里插入图片描述

    • 在本地终端输入以下指令 .6006 是在服务器中打开的端口,而 33090 是根据开发机的端口进行更改

      ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 33854
      

      在这里插入图片描述
      在这里插入图片描述

      这样就映射成功了
      在这里插入图片描述

  • 在InternStudio终端运行以下代码:

    bash
    conda activate demo  # 首次进入 vscode 会默认是 base 环境,所以首先切换环境
    streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006
    
  • 测试结果
    在这里插入图片描述

这篇关于书生·浦语大模型InternLM-Chat-1.8B 智能对话 Demo 第二期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874478

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt