RankLLM:RAG架构下通过重排序实现精准信息检索

2024-04-03 21:04

本文主要是介绍RankLLM:RAG架构下通过重排序实现精准信息检索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

在检索增强生成(Retrieval-Augmented Generation, RAG)的框架下,重排序(Re-Rank)阶段扮演着至关重要的角色。该阶段的目标是对初步检索得到的大量文档进行再次筛选和排序,以确保生成阶段能够优先利用最相关的信息。这一过程类似于传统信息检索中的两阶段排序策略,其中粗排(粗略排序)阶段追求高效的检索速度,而精排(精细排序)阶段则专注于提升结果的相关性和准确性

在RAG架构中,重排序不仅仅是对文档列表的简单重新排列,它还涉及到对文档相关性的深入理解和评估。有效的重排序技术能够显著提升RAG系统的性能,确保生成的内容不仅准确,而且与用户查询高度相关。然而,现有的重排序方法面临着一系列挑战,包括对输入顺序的过度依赖、缺乏对动态网络信息的适应性,以及模型的不透明性和不可复现性。

针对这些挑战,开源的重排序方法 RankLLM 应运而生。RankLLM 利用大型语言模型(LLMs)的强大能力,通过零样本学习(zero-shot learning)的方式,无需特定任务的训练数据即可执行重排序任务。这种方法不仅提高了重排序的效率和效果,而且通过开源实现了模型的透明性和可访问性,为研究社区提供了一个可复现、可改进的重排序工具。

RankLLM 的引入为RAG架构的发展提供了新的动力,它不仅能够处理静态的、预先定义的查询,还能够适应实时变化的数据和查询,满足不断演变的信息需求。通过这种开源和高效的重排序策略,RankLLM有望成为未来RAG系统中不可或缺的组成部分,推动信息检索和自然语言处理领域的进一步发展。

二、RankLLM 介绍

RankLLM 是一种基于大型语言模型(Large Language Models, LLMs)的重排序方法,它利用了LLM的强大能力来改进信息检索的结果。在信息检索的过程中,初步检索阶段可能会返回大量相关或不相关的文档,RankLLM 的作用是在这些文档中进行再次排序,以提高检索结果的相关性和准确性。RankLLM通过使用LLM作为“提示-解码器”(prompt-decoder),在没有特定任务训练数据的情况下(即零样本设置),对文档列表进行重新排序,优化诸如归一化折扣累积增益(nDCG)等检索指标。

三、RankLLM 原理

RankLLM 重排序的原理基于零样本学习(zero-shot learning),它不需要特定任务的训练数据。RankLLM 使用一种提示(Prompt)来指导LLM如何对文档列表进行排序。这个提示描述了重排序任务,并提供了一个格式,让模型知道如何生成排序后的文档列表。RankLLM 利用了 LLM 的理解和生成能力,通过指令微调(instruction fine-tuning)来学习如何根据相关性对文档进行排序

在实际操作中,RankLLM接收一系列候选文档和相关的查询,然后使用LLM生成一个按相关性排序的文档列表。这个过程涉及到从大型数据集中提取有用的信息,并将这些信息融入到LLM的生成过程中,以实现更准确的重排序。

四、RankLLM 实现

如何使用 RankLLM 工具对搜索结果进行重新排序,以提升结果的相关性和准确性。RankLLM 提供了一系列专门针对这项任务进行优化的开源大语言模型,例如 RankVicunaRankZephyr

本文将通过比较 Van Gogh Wiki 页面的搜索结果,分别使用了传统的检索方法和结合 RankLLM 的检索方法。一方面是仅利用检索(通过 llama-index 的 VectorIndexRetriever 实现),另一方面则是结合了 RankLLM 进行的检索加重排序。演示中展现了 RankLLM 的两种模型:

  • RankVicuna 7B V1
  • RankZephyr 7B V1 - Full - BF16

依赖项:

  • 目前,RankLLM 的重排序功能需要 CUDA 环境,并且必须安装 rank_llm(通过命令 pip install rank_llm 安装)。
  • 而内置的检索工具则依赖于 Pyserini,需要 JDK11、PyTorch 和 Faiss 环境。

castorini/rank_llm 是一个专门用于利用大语言模型(如 GPT3.5, GPT4, Vicuna 和 Zephyr)进行提示解码的代码库。

4.1、安装依赖

%pip install llama-index-core
%pip install llama-index-llms-openai
%pip install llama-index-postprocessor-rankllm-rerank
%pip install rank-llm
import nest_asyncio# 启用异步I/O
nest_asyncio.apply()
import logging
import syslogging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import LLMRerank
from llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display
import osOPENAI_API_TOKEN = "sk-"
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN

4.2、加载数据,构建索引

从维基百科(Wikipedia)获取Vincent van Gogh的文本内容,并将这些文本内容保存到本地文件中,最后构建一个索引以便后续的数据检索。

from pathlib import Path
import requestswiki_titles = ["Vincent van Gogh",
]data_path = Path("data_wiki")for title in wiki_titles:response = requests.get("https://en.wikipedia.org/w/api.php",params={"action": "query","format": "json","titles": title,"prop": "extracts","explaintext": True,},).json()page = next(iter(response["query"]["pages"].values()))wiki_text = page["extract"]if not data_path.exists():Path.mkdir(data_path)with open(data_path / f"{title}.txt", "w") as fp:fp.write(wiki_text)
# 加载文档
documents = SimpleDirectoryReader("./data_wiki/").load_data()
# 构建索引
index = VectorStoreIndex.from_documents(documents,
)

五、检索与 RankLLM 重排序流程

  1. 准备检索器和重排序器

在开始检索流程之前,首先需要准备两个关键组件:检索器(Retriever)和重排序器(Reranker)。检索器负责从大量文档中快速筛选出与查询相关的候选文档集合。常见的检索器包括基于词频的BM25算法、基于神经网络的SPLADE++ ED和RepLLaMA等。这些检索器可以是无监督的、监督的、稀疏的、密集的,或者是它们的混合形式。重排序器则进一步优化检索结果,通过深入理解文档内容和用户查询意图,对候选文档进行精细排序。

  1. 对给定的搜索查询进行检索,不加重排序

用户发起搜索查询后,检索器首先在文档集合中进行初步检索,生成一个未经排序的候选文档列表。这一步骤不涉及任何形式的排序,目的是尽可能广泛地覆盖与查询相关的文档,为后续的重排序提供原材料。

  1. 使用 RankZephyr 进行重排序后的搜索查询检索

接下来,利用 RankZephyr 对初步检索得到的候选文档列表进行重排序。RankZephyr 是一种基于开源大型语言模型(LLM)的重排序工具,它通过零样本学习(zero-shot learning)的方式,无需特定任务的训练数据即可执行重排序任务。RankZephyr通过指令微调(instruction fine-tuning)来学习如何根据相关性对文档进行排序,能够根据归一化折扣累积增益(nDCG)等检索指标优化文档排序。

  1. 使用 RankVicuna 进行重排序后的搜索查询检索

为了进一步提升检索效果,可以采用 RankVicuna 对 RankZephyr 的输出结果进行二次重排序。RankVicuna 是另一种基于开源LLM的重排序工具,它在 RankZephyr 的基础上进一步优化,通过多阶段的重排序策略(progressive reranking)来迭代改进排序结果。RankVicuna 通过引入变量窗口大小和随机输入顺序的训练,增强了模型对于不同重排序场景的适应性和鲁棒性。

通过上述流程,RankLLM 能够有效地结合检索器的快速筛选能力和重排序器的深度理解能力,为用户提供更加精准和相关的搜索结果。

from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
from llama_index.postprocessor.rankLLM_rerank import RankLLMRerankimport pandas as pd
from IPython.display import display, HTMLdef get_retrieved_nodes(query_str,vector_top_k=10,reranker_top_n=3,with_reranker=False,with_retrieval=False,model="zephyr",
):query_bundle = QueryBundle(query_str)# 配置检索器retriever = VectorIndexRetriever(index=index,similarity_top_k=vector_top_k,)retrieved_nodes = retriever.retrieve(query_bundle)if with_reranker:# 配置rerankerreranker = RankLLMRerank(top_n=reranker_top_n, with_retrieval=with_retrieval, model=model)retrieved_nodes = reranker.postprocess_nodes(retrieved_nodes, query_bundle)return retrieved_nodesdef pretty_print(df):return display(HTML(df.to_html().replace("\\n", "")))def visualize_retrieved_nodes(nodes) -> None:result_dicts = []for node in nodes:result_dict = {"Score": node.score, "Text": node.node.get_text()}result_dicts.append(result_dict)pretty_print(pd.DataFrame(result_dicts))

不加重排序的检索前三结果:

预期结果显示:

经过梵高的多次恳求,高更于10月23日抵达阿尔勒,并于11月两人一起作画。高更在他的《向日葵画家》中描绘了梵高。

new_nodes = get_retrieved_nodes("Which date did Paul Gauguin arrive in Arles?",vector_top_k=3,with_reranker=False,model="zephyr",
)visualize_retrieved_nodes(new_nodes)

正确的结果在未重排序时排名第三。

使用 RankZephyr 重排序前 10 结果并返回前 3:

new_nodes = get_retrieved_nodes("Which date did Paul Gauguin arrive in Arles?",vector_top_k=10,reranker_top_n=3,with_reranker=True,with_retrieval=False,model="zephyr",
)visualize_retrieved_nodes(new_nodes)

在 RankZephyr 重排序后,正确的结果升至第一位。

使用 RankVicuna 重排序前 10 结果并返回前 3:

new_nodes = get_retrieved_nodes("Which date did Paul Gauguin arrive in Arles?",vector_top_k=10,reranker_top_n=3,with_reranker=True,with_retrieval=False,model="vicuna",
)visualize_retrieved_nodes(new_nodes)

在 RankVicuna 重排序后,正确的结果同样位居第一位。

六、总结

RankLLM是一种创新的重排序方法,它利用了大型语言模型的能力来改进信息检索的结果。通过零样本学习和指令微调,RankLLM能够在不需要特定任务训练数据的情况下,有效地对文档列表进行重新排序。这种方法不仅提高了检索结果的相关性和准确性,而且由于其开源性质,还增加了研究的可重复性和模型的可访问性。RankLLM的引入为解决RAG架构中的一些关键挑战提供了新的可能性,为未来的信息检索和文本生成任务开辟了新的道路。

七、References

[1]. RankLLM Github:https://github.com/castorini/rank_llm

[2]. Pyserini: https://github.com/castorini/pyserini

[3]. Ronak Pradeep, Sahel Sharifymoghaddam, Jimmy Lin, R. (2023). RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze: https://arxiv.org/abs/2312.02724

这篇关于RankLLM:RAG架构下通过重排序实现精准信息检索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873974

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如