TextCraftor:一种创新的文本编码器微调技术,无需额外数据集改善图像质量与文本对齐

本文主要是介绍TextCraftor:一种创新的文本编码器微调技术,无需额外数据集改善图像质量与文本对齐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TextCraftor是一种创新的文本编码器微调技术,能够显著提升文本到图像生成模型的性能。

通过奖励函数优化,TextCraftor是一种创新的文本编码器微调技术改善了图像质量与文本对齐,无需额外数据集。从演示图片来看效果相当好。

TextCraftor的提出为文本到图像生成领域带来了新的视角。其在图像编辑、视频合成等领域的应用前景广阔,尤其是在需要高质量和与文本高度对齐的图像生成任务中。此外,TextCraftor的控制生成能力也为个性化内容创作提供了新的可能性。

相关链接

论文链接:https://arxiv.org/pdf/2403.18978.pdf

论文阅读

TextCraftor:你的文本编码器可以是图像质量控制器

摘要

基于扩散的文本到图像生成模型,例如Stable Diffusion已经彻底改变了内容生成领域。尽管他们在图像编辑和视频合成有很强大的能力,但是这些模型并非没有其局限性。

合成一个与输入文本对齐良好的图像仍然是一个挑战,需要详细的提示并多次运行精心制作才能获得满意的结果。 为了减轻这些限制,许多研究都在努力利用各种技术微调预训练的扩散模型即UNet。然而,文本到图像扩散模型训练的关键问题一直存在大部分仍未开发。

是否可能和可行微调文本编码器来提高文本到图像扩散模型的性能?

我们的研究结果表明,在其他大型语言模型的Stable Diffusion中使用时不替换CLIP文本编码器,通过我们提出的微调方法TextCraftor来增强它,从而在定量基准和人的评估。

有趣的是,我们的技术还可以通过插值不同的文本编码器来实现可控的图像生成微调各种奖励。我们也证明了TextCraftor与UNet微调是正交的,并且可以结合进一步提高生成质量。

方法

TextCraftor概述:一个基于提示数据和奖励函数的端到端文本编码器微调范例。 将文本嵌入转发到DDIM去噪链中,得到输出图像并计算奖励损失,然后再进行反推。通过最大化奖励来更新文本编码器(以及可选的UNet)的参数。

实验

定性的可视化

  • 左:在part-prompts上生成的图像,按照SDv1.5, prompt engineering, DDPO和TextCraftor的顺序。

  • 右:来自HPSv2的示例,订购为sv1.5,提示工程和TextCraftor。

不同模型生成结果比较

每个提示显示从三个不同模型生成的图像,分别是SDv1.5,TextCraftor, TextCraftor UNet,从左到右列出。对于所有生成结果随机种子是固定的。

原始文本之间嵌入插值(权重)

0.0)和一个来自TextCraftor(重量1.0),演示 可控的一代。从上到下一行:TextCraftor使用HPSv2, PickScore和Aesthetics作为奖励模型。

混合风格

从不同的奖励模型微调的文本编码器可以协作并作为风格混合。底部列出的权重分别用于组合来自{origin, Aesthetics, PickScore, HPSv2}的文本嵌入。

消融对奖励模型及CLIP的影响

最左边的栏显示原始图像。averaged Aesthetics、PickScore和HPSv2平均得分分别为5.49分、18.19分和0.2672。下面的列显示使用不同的奖励模型合成无CLIP约束和有CLIP约束的图像。奖励分数列在底部。

结论

这项工作提出了TextCraftor,一个稳定而强大的框架来微调预训练的文本编码器来改进文本到图像的生成。只有提示词数据集和预定义的奖励函数,TextCraftor可以显着提高生成质量相比预训练的文本到图像模型,基于强化学习的方法和提示工程。

TextCraftor的提出为文本到图像生成领域带来了新的视角。其在图像编辑、视频合成等领域的应用前景广阔,尤其是在需要高质量和与文本高度对齐的图像生成任务中。此外,TextCraftor的控制生成能力也为个性化内容创作提供了新的可能性。

感谢你看到这里,也欢迎点击关注下方公众号,一个有趣有AI的AIGC公众号:关注AI、深度学习、计算机视觉、AIGC、Stable Diffusion、Sora等相关技术,欢迎一起交流学习💗~

这篇关于TextCraftor:一种创新的文本编码器微调技术,无需额外数据集改善图像质量与文本对齐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873762

相关文章

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下