LEAP模型的能源环境发展、碳排放建模预测及不确定性分析教程

本文主要是介绍LEAP模型的能源环境发展、碳排放建模预测及不确定性分析教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:LEAP模型的能源环境发展、碳排放建模预测及不确定性分析教程icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247599754&idx=4&sn=243c9f8bff355235a7056c2cbb1331fa&chksm=fa82076dcdf58e7b871c3369c95ead9ff1d90baa0431318b26b6abd27ea8d5dd5ae5ffe9ee05&token=49479107&lang=zh_CN#rd

 LEAP模型允许研究者根据研究目的、数据可获取度、研究对象特点等灵活构建模型结构,十分适用于能源数据不全面情况,掌握该模型不仅有助于高校及科研院所工作人员从事能源系统评价诊断、低碳节能发展技术研判等能源系统工程相关工作。特别是可应用于风光储、氢能一体化利用策略在全社会能源供应系统中的作用、电动汽车对终端能源需求及碳排放的影响等热点问题。

第一LEAP建模理论基础

1.1能源需求及碳排放预测方法 

1.1.1 能源系统工程基础理论及典型研究内容

1.1.2典型能源需求及碳排放预测方法和模型

1.1.3 LEAP模型计算原理

能源需求为活动水平和活动强度之积:

其中是总的能源需求量,是活动水平,是能源强度;i,j 和 k分别代表不同的部门、设备和燃料

温室气体排放量为活动水平和排放因子之积:

图片

其中是总的温室气体排放量,是活动水平(能源消费量或者工业产出),是排放因子;i,j 和 k分别代表不同的部门、设备和燃料

1.2 LEAP软件操作基础 

1.2.1 LEAP软件安装与注册

1.2.2 LEAP软件设置、主要模块及基本操作

1.2.3 LEAP软件模型构建基本原理和数据结构

1.3 情景分析法

情景分析法原理及其与LEAP模型的结合使用。

1.4 能源及碳排放数据获取方式

1.4.1 经济、人口、工业产品产量、交通运输周转量:统计年鉴;GDP的不变价、可比价换算;

1.4.2 能源:行业年鉴、统计年鉴能源篇、政府报告、电力消费、发展规划、标准规范等;能源平衡表读取分析、能源平衡流动图绘制;明确能源统计报表,了解我国能源统计制度;

1.4.3温室气体排放:历年温室气体排放清单、统计年鉴、技术标准、实验数据、文献报告等。

第二基于LEAP模型的能源需求预测模型构建

2.1 结合情景分析法的基本能源需求预测模型构建

2.1.1 需求模块主要功能和计算方法

2.1.2 案例描述及基本参数设置:标准单位(标吨煤、净现值)、基年、基期、参考情景等

2.1.3 需求侧模型构建

- 需求树形图绘制

- 基年账户数据录入:城镇居民及农村家庭能源消费数据(家庭数及各能源品种消费强度)

2.1.4 参考情景创建及结果分析

- 参考情景创建:预测年内人口结构及能源消费强度变化率

- 以图表方式查看结果

2.1.5 节能政策效果量化:高效照明及冰箱

- 创建节能情景,输入各节能措施下能源强度的预测年内变化率

- 查看结果并与参考情景结果比较

2.2 不同部门、情景下的细化需求侧模型构建

2.2.1 细化需求侧部门模型:工业、交通及商业建筑

2.2.2 工业

- 细化为能源密集型产业(钢铁和制浆造纸)和其他所有行业

- 基年账户数据录入:活动水平(产值或产量)、活动强度(过程热、电力、油气煤等化石能源消耗强度)

- 参考情景创建:使用Time Series Wizard设置各参数预测年变化情况

- 结果查看及分析

2.2.3 交通部门

- 细化为客运交通(小汽车、公共汽车及铁路)及货运交通(公路货运及铁路货运)

- 基年账户数据录入:活动水平(周转量、运输里程)、活动强度(单位里程耗油量、能源强度)

- 参考情景创建:周转量、轿车占比以及人均货运需求增长率、能源效率提高率

- 结果查看及分析

2.2.4 商业建筑

- 细化为多种燃料和技术下的采暖、制冷、供电等有效能源分析

- 基年账户数据录入:活动水平(建筑面积)、活动强度(终端能源消费等价热值、供热技术效率)、燃料消费比例等

- 参考情景创建:建筑面积、能源强度及供热技术效率变化率

- 结果查看及分析

2.2.5 总体能源需求分析

- 分部门、子部门、能源品种、年份、情景下能源需求预测

图片

图1 预测年各部门能源需求(左)及各能源品种需求(右)示意图

第三基于LEAP模型的能源供应预测模型构建

3.1 结合情景分析法的基本能源供应预测模型构建

3.1.1 能源供应转换模块主要功能及计算方法

3.1.2 基础供应侧模型构建及参数设置

- 能源输入、转化模型框架图绘制

- 基年账户数据录入:发电、输配电、天然气输配等模块设置

- 电网供电稳定性、电力调度原则、电网负荷变化、不同发电技术特征等参数设置

3.1.3参考情景创建及结果分析

- 参考情景创建:电厂建设、发电效率、能源运输效率等年度变化情况

- 重点关注各发电形式间的调度原则

- 查看各发电方式电力贡献率等结果

3.1.4 能源流动情况诊断

- 基于能源流动图分析该案例能源供应及消费平衡情况

- 研判参考情景下能源发展态势

3.1.5 能源供应侧节能措施效果量化

- 节能政策:输配电损失减少、电力系统负荷系数改进

3.2 不同能源品种、情景下的细化供应侧模型构建

3.2.1 细化能源转换模型:木炭生产、电力、炼油和煤炭开采

3.2.2 木炭生产

模拟单能源品种输入单能源品种产出的能源转换流程

- 建立标准模块:木炭产量、不同技术转换效率(技术替代)

3.2.3 电力生产

模拟多能源品种输入单能源品种产出的能源转换流程

- 调整发电系统容量以配合电量需求:水电、煤电、燃油发电

- 新能源发电新增容量规划

3.2.4 炼油

模拟单能源品种输入多能源品种产出的能源转换流程

- 炼油厂效率、产品种类及各产品产量

3.2.5 煤炭开采

模拟本地能源开采

- 煤炭开采能力、煤矿厂效率

3.2.6 资源情况

模拟不同能源品种的本地生产、调入调出情况

- 区分生产资源、进口资源

- 区分化石燃料储备、可再生能源产量

3.2.7 逐年、逐情景能源系统图、能源平衡表分析比较

图片

各能源品种能源系统转化图(左)及能源平衡表(右)

第四基于LEAP模型的温室气体及其他空气污染物排放预测模型构建

4.1 结合情景分析法的基本排放预测模型构建

4.1.1 排放模块主要功能和计算方法

4.1.2 温室气体及其他空气污染物排放模型构建

- 明确污染物类型和污染物来源:能源及非能源过程(工业过程、碳汇等)

- 污染物排放因子录入及TED数据库使用及编辑

- 基于能源供应及消费模块的构建,链接IPCC排放因子库或者自行添加排放因子,可采用多种方法定义排放因子

4.1.3 参考情景构建及结果分析

- 查看参考情景下各大气污染物预测结果

4.1.4 节能政策情景构建

- 查看节能政策对各大气污染物排放的影响

4.2 结合情景分析法的非能源来源排放预测模型构建

4.2.1 非能源来源排放类型

- 工业流程和产品使用、农业林业其他土地使用、废弃物

4.2.2 案例整体描述及基础参数设置

4.2.3 模型构建及基年账户数据录入

- 制冷空调行业排放HFC

- 与EXCEL链接,直接输入排放因子逐年值

- 粪便管理中产生的甲烷、一氧化二氮

- 设定自定义变量,实现基于不同活动水平的排放因子

4.2.4 基础情景设置

- 非能源来源排放活动水平及排放强度设置

- 全球变暖潜力值等结果比较

4.2.5 沼气发电情景设置

- 发电模块中设置沼气发电技术参数

- 非能源排放部门对应减排量设置

图片

图3 与基础情景沼气发电情景全球变暖潜力值

第五基于LEAP模型的能源需求及碳排放预测实例示范

5.1 基于LEAP的典型能源输入型城市能源需求预测实例操作

5.1.1数据搜集及模型结构划分

- 根据数据可获得性,基于经济和能源统计表将模型划分如下,综合考虑宏观经济社会发展、能源环境政策及能源技术水平的影响。

图片

图4 某市LEAP模型结构划分

5.1.2 基年能流图绘

图片

图5 某市基年能源流动图

5.1.3 情景设置

- 结合平均增长率法、计量经济学模型(ARIMA模型等)、人口预测模型(Leslie模型)等方法,考虑不同政策设置多种情景:

- 基础情景:能源需求在过去的基础上自然发展(BS)

- 不同经济增速情景:高、低经济增长速度(HGDP、LGDP)

- 不同产业结构情景:高、低第二产业占比(HIS、LIS)

- 节能情景:技术进步及设备升级引起的能源强度降低(ES)

- 综合情景:综合考察GDP增速、第二产业占比及能源强度变化(MBS、MSS)

5.1.4 结果对比

- 定量分析GDP增速、产业结构及节能目标对该市能源需求的影响

- 重点部门节能政策效果量化

- 能源发展情况研判及政策建议

图片

图6 不同GDP增速情景(左)及不同产业结构(右)能源消费总量及能源强度

图片

图7  节能情景(左)及综合情景(右)能源消费及能源强度

5.1.5 预测结果不确定性分析

- 基于蒙特卡洛法,采用与EXCEL链接的水晶球软件,操作简单

- 构建函数,确定估计变量和需求参数

- 确定参数的概率分布,包括正态分布、对数正态分布等

- 分析指定情景、指定年份下的能源需求总量分布曲线及不确定性敏感性分析

图片

图8 蒙特卡洛不确定性分析原理图

图片

图9 典型年能源需求预测结果概率分布图(左)及各参数对需求预测结果方差贡献率

5.2 基于GREAT模型的省市一级能源政策分析和排放评估示例

5.2.1 基于GREAT模型的能源需求模块构建

- 生活用能:城市、农村;电力、天然气等;照明、家电用电

- 商业用能

- 交通用能

- 工业用能:钢铁、水泥、铝工业、造纸业、玻璃工业等

- 农业用能

5.2.2 基于GREAT模型的能源转换模块构建

- 输配电

- 热力生产和供应

- 发电

- 石油开采

- 焦化

- 天然气开采

- 煤炭开采

5.2.3 控制变量设置

- 生活电耗强度指数

- 工业电耗强度指数

- 农业燃料消耗强度指数等

5.2.4 基于GREAT模型的排放模块构建

- 电力间接排放或直接排放计算等

5.2.5 情景设计及结果分析

5.3 LEAP用于碳达峰预测注意事项

5.3.1 省级温室气体排放编制指南解读

5.3.2 省级温室气体排放排放部门划分与能源消费统计的区别

5.3.3 排放因子和折标煤系数统一

5.3.4 碳排放强度、减排空间、非化石能源占比等指标设定

第六LEAP模型成本效益分析

- 能源需求的资本成本、运行和维护成本,能源节约的成本

- 能源转换资本成本、固定成本、运行及维护成本

- 本土资源的成本

- 进、出口燃料的成本

- 污染物排放的外部成本

- 用户自定义成本等

6.1.2 成本计算系统边界和经济参数含义

- 需求侧、部分能源系统和整体能源系统

- 贴现率、燃料成本、设备投资成本、能源效率提升成本等经济参数

6.2 示例整体描述

6.2.1成本数据参数输入和模型设置

- 技术渗透

- 技术性能

- 技术成本

6.2.3 政策情景创建

- 高效照明

- 节能冰箱

- 压缩天然气公交车

- 天然气和可再生能源

- 工业效率提升

6.2.4 成本效益结果分析

- 成本效益分析表

- 不同情景下节能减排净现值

- 边际减排曲线

图片

图10 各情景典型年成本效益分析表

第七LEAP模型交通运输及碳排放

7.1 基于库存周转率法的交通部门建模

7.1.1 库存周转率法含义及使用

- 销售量

- 库存量

7.1.2 车辆性能随车龄分布曲线设定

- 行驶里程数

- 能源效率

- 排放因子

7.2 示例整体描述

7.2.1 模型构建及基本设置

- 模型架构设置

- 轿车、运动多功能车(SUV)数量(分为柴油车、汽油车、混合动力车及电动车)

图片

图11 交通部门碳排放模型结构树形图

7.2.2 基年账户车辆参数输入

- 车辆年龄及库存销售量函数关系

- 车辆耗油量及耗油量与车辆年龄关系

- 车辆行驶里程数

7.2.3 基年账户排放因子录入

- 二氧化碳、氮氧化物、一氧化碳及可吸入颗粒

- 根据各车型输入其排放因子

7.2.4 参考情景设置(BAU)

- 无新政策减少燃料使用及排放

- 预测年内各参数变化率

7.2.5 政策情景设置

- 燃油经济性提高(Improved fuel economy)

- 混合动力电动汽车、电动汽车市场占有率提升(Hybrid)

- 柴油轿车和柴油SUV车市场占有率提升(Diesel)

- 新尾气排放标准(Tailpipe Emissions Standard)

- 轿车推广力度高于SUV(Fewer SUVS)

- 组合情景(Combined)

7.2.6 结果分析

图片

图12 各情景典型预测年碳排放量

第八LEAP模型电力系统优化专题

8.1 LEAP优化模块基本原理

- 优化方法的分类和简介

- NEMO和Julia平台的使用

8.2以发电成本最小化为目标的发电模块优化示例

- 可用于新能源装机配置和电网调度研究

8.2.1多种发电技术特性数据

- 成本

- 装机容量

- 系统负荷曲线

- 规划储备余额

- 效率

- 各技术排放因子

8.2.2 导入小时负载数据建立载模型

- 时间片段

- 每小时的点子表格数据(EXCEL)

- 年度变化

- 系统能源负荷曲线

8.2.3 情景设置

- 仅天然气发电

- 仅核能发电

- 仅水力发电

- 仅风能发电

- 仅光伏光热发电

- 仅燃煤发电

8.2.4 单独发电模式情景结果查看

- 社会成本

- 规划装机容量

- 温室气体排放量等外部价值

8.2.5 最小发电成本优化配置情景

- 使用NEMO进行优化

- 得到优化的发电技术组合和调度分配情况

- 选择优化变量及优化情景

图片

图13 各情景典型年发电成本(左)及发电小时数来源(右)

8.3 储能模块构建

- NEMO框架储能模块的使用

- 优化储能模块大小及储放时间

8.4 约束条件下的最低发电成本优化模型

- 建立排放约束

- 建立最低可再生能源利用率约束

- 寻找在约束条件下最低发电成本情景

图片

图14 在不同约束条件下各情景碳排放量(左)及发电成本(右)

这篇关于LEAP模型的能源环境发展、碳排放建模预测及不确定性分析教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870676

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}