华盛顿大学撰文反驳微软,我们无法删除大模型关于哈利波特的记忆

本文主要是介绍华盛顿大学撰文反驳微软,我们无法删除大模型关于哈利波特的记忆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在人工智能的发展过程中,一个引人入胜的议题是机器学习模型是否能够被训练以忘记其曾经学到的信息。近期,Ronen Eldan和Mark Russinovich在其研究“谁才是哈利·波特?”[1]中提出了一种创新技术,声称能够从LLMs中“抹去”特定数据集的记忆,尤其是针对《哈利·波特》这样的知名作品。他们的方法引发了业界的广泛关注,并被认为是在LLMs“遗忘”技术领域的一大突破。

但是,本文将对Eldan和Russinovich的研究成果提出质疑,认为这样的声明可能过于宽泛。本文通过一系列轻量级实验,探索记忆消除的界限,尤其是针对深度学习模型是否真的能够彻底忘记哈利·波特系列内容的可能性。

分享几个网站

GPT-3.5研究测试:
https://hujiaoai.cn

GPT-4研究测试:
https://higpt4.cn

Claude-3研究测试(全面吊打GPT-4):
https://hiclaude3.com

论文标题:
THE BOY WHO SURVIVED: REMOVING HARRY POTTER FROM AN LLM IS HARDER THAN REPORTED

论文链接:
https://arxiv.org/pdf/2403.12082.pdf

Eldan和Russinovich的方法概述

在Eldan和Russinovich的研究中,他们提出了一种针对LLMs的“遗忘”技术,这一技术的核心在于通过微调(finetuning)过程,有选择性地从模型中移除特定信息。具体来说,他们的方法首先通过强化学习(reinforcement learning)来训练一个模型,使其对目标数据集(例如《哈利·波特》系列)有更深入的理解。然后,他们利用这个强化后的模型来识别与目标数据集最相关的词汇和表达,通过替换这些特定的表达为更通用的词汇,以此来“遗忘”原始数据集中的信息。

下图比较了在不同微调步骤中,对于句子“Harry Potter studies”下一个词汇的概率分布,展示了最可能的下一个词汇是如何逐渐从“magic”转变为通用完成形式的。

图片

Eldan和Russinovich声称,通过这种方法,他们能够在大约1个GPU小时的微调后,有效地抹去模型对《哈利·波特》系列的记忆(下图比较了Llama-7b微调前后的变化)。

图片

他们通过在多个常见的语言模型基准测试中评估模型的性能,如Winogrande、HellaSwag、ARC等,发现模型在这些测试中的表现几乎没有受到影响(下图),从而得出结论,认为他们的技术能够在不影响模型整体性能的前提下,实现对特定内容的“遗忘”。

图片

实验设置与设计:挑战LLM遗忘哈利·波特内容的可能性

本文作者在2019年的iMac上运行了一系列实验,并通过Ollama工具进行了测试。

实验的设计主要在以下三个方面:

1. 原型测试:检验与哈利·波特相关的核心概念

在原型测试中,我们探索了与哈利·波特强烈关联的概念,例如“楼梯下的男孩”和“幸存的男孩”。这些原型提示旨在测试作为相关标记集群的“想法”,而不是特定的标记序列。

2. 遗漏术语测试:探索可能被忽略的特定词汇

我们还测试了作者可能遗漏的术语,如“麻瓜”和“泥巴种”。这些测试旨在发现在尝试从模型中删除哈利·波特相关内容的过程中可能被忽视的特定词汇。

3. 不可消除短语测试:评估难以移除的特定句子

最后,我们对那些作者可能无法消除的短语进行了测试,例如“不可名状的他”。与原型不同,这些短语测试是针对特定的标记序列。

实验结果与讨论:对知识“消除”目标的批判性思考

1. 讨论记忆消除的定义和评估方法

图片

记忆消除,或所谓的“memory-hole”过程,指的是从LLMs中删除特定知识的尝试。Shostack通过少量不到十二次的试验,模型不仅明确提到了哈利波特,还多次“接近”提及,例如提到了“harry harris series”(上图)和“Voldemar Grunther”(下图),这些都与哈利波特系列有着密切的联系。

图片

这些实验结果引发了对记忆消除定义和评估方法的深入思考。首先,我们必须明确“消除”知识的含义:它是否意味着模型完全不再生成与目标内容相关的任何信息,还是仅仅减少了这类信息的生成频率?其次,评估记忆消除的有效性需要一套严谨的方法论。例如,是否应该仅仅依赖于模型的直接输出,或者还应该考虑模型生成的内容与目标知识的相似度?

2. 锚定效应和安全分析的重要性

在进行记忆消除的实验时,避免锚定效应至关重要。锚定效应是指个人在面对不确定性时,会过分依赖(或锚定于)第一个接收到的信息。Shostack在实验中未完全阅读Eldan和Russinovich的论文,这反而避免了他在实验设计上受到原有结论的影响。这种无意识的实验设计可能更能揭示模型记忆消除的真实效果。

此外,安全分析在评估记忆消除的过程中也扮演了重要角色。安全分析关注的是在消除特定知识后,模型是否仍可能产生有害或不当的输出。例如,尽管模型可能不再直接提及“哈利波特”,但它可能会生成与哈利波特相关的隐晦内容,这仍然可能触发版权或其他法律问题。

总结:对LLM记忆消除能力的反思与展望

1. 实验结果的反思

实验结果显示,尽管模型经过调整以避免生成哈利波特相关内容,但在多次尝试中,模型仍然能够产生与哈利波特相关的回应。例如,模型曾经提到“harry harris series”和“Voldemar Grunther”,这些都与哈利波特系列有着密切的联系。这表明,尽管模型被训练以忘记特定的信息,但它仍然能够通过不同的方式回忆起这些信息,或者至少是与之相关的概念。

2. 记忆消除的挑战

记忆消除的过程比预期中更为复杂。尽管可以通过调整模型来减少特定信息的生成,但完全消除模型中的某个特定知识点似乎是一项艰巨的任务。这不仅仅是因为信息可能以多种形式存在于模型中,而且因为语言本身的复杂性和多样性使得完全避免某些话题变得极其困难。

3. 未来的展望

展望未来,我们需要更深入地理解LLM如何存储和检索信息,以及如何更有效地进行记忆消除。这可能需要开发新的技术和方法,以更精细地控制模型的输出,并确保它们不会无意中泄露被遗忘的信息。此外,我们还需要考虑如何评估记忆消除的效果,以及如何确保这一过程不会损害模型的其他功能和性能。

这篇关于华盛顿大学撰文反驳微软,我们无法删除大模型关于哈利波特的记忆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870657

相关文章

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

Python按条件批量删除TXT文件行工具

《Python按条件批量删除TXT文件行工具》这篇文章主要为大家详细介绍了Python如何实现按条件批量删除TXT文件中行的工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.简介2.运行效果3.相关源码1.简介一个由python编写android的可根据TXT文件按条件批

使用@Slf4j注解,log.info()无法使用问题

《使用@Slf4j注解,log.info()无法使用问题》在使用Lombok的@Slf4j注解打印日志时遇到问题,通过降低Lombok版本(从1.18.x降至1.16.10)解决了问题... 目录@Slf4androidj注解,log.info()无法使用问题最后解决总结@Slf4j注解,log.info(

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

三国地理揭秘:为何北伐之路如此艰难,为何诸葛亮无法攻克陇右小城?

俗话说:天时不如地利,不是随便说说,诸葛亮六出祁山,连关中陇右的几座小城都攻不下来,行军山高路险,无法携带和建造攻城器械,是最难的,所以在汉中,无论从哪一方进攻,防守方都是一夫当关,万夫莫开;再加上千里运粮,根本不需要打,司马懿只需要坚守城池拼消耗就能不战而屈人之兵。 另一边,洛阳的虎牢关,一旦突破,洛阳就无险可守,这样的进军路线,才是顺势而为的用兵之道。 读历史的时候我们常常看到某一方势

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了