LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】

本文主要是介绍LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】

  • 题目描述:
  • 解题思路一:分治,递归
  • 解题思路二:动态规划。关键思路是如果构造节点数目为 n 的真二叉树,此时可以从节点数目序列为 [(1,n−2),(3,n−5),⋯ ,(n−2,1)]的真二叉树中构成,按照所有可能的组合数进行枚举,即可构造成节点数目为 n 的真二叉树。即左子树分配1,3,5, ... , n-2个节点。
  • 解题思路三:0

题目描述:

给你一个整数 n ,请你找出所有可能含 n 个节点的 真二叉树 ,并以列表形式返回。答案中每棵树的每个节点都必须符合 Node.val == 0 。

答案的每个元素都是一棵真二叉树的根节点。你可以按 任意顺序 返回最终的真二叉树列表。

真二叉树 是一类二叉树,树中每个节点恰好有 0 或 2 个子节点。

示例 1:
在这里插入图片描述
输入:n = 7
输出:[[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
示例 2:

输入:n = 3
输出:[[0,0,0]]

提示:

1 <= n <= 20

解题思路一:分治,递归

如果你要为某节点分配一个左节点,那么一定也要为它分配一个右节点。因此,如果 N 为偶数,那一定无法构成一棵满二叉树。

为了列出所有满二叉树的排列,我们可以为左子树分配 x 节点,为右子树分配 N - 1 - x(其中减 1 减去的是根节点)节点,然后递归地构造左右子树。

x 的数目从 1 开始,每次循环递增数目 2(多增加 2 个节点,等于多增加 1 层)。

递归过程
递归最关心的两个问题是:

  • 结束条件
  • 自身调用

对于这个问题来说,结束条件为:

  • 当 N 为偶数时:无法构造满二叉树,返回空数组
  • 当 N == 1 时:树只有一个节点,直接返回包含这个节点的数组
  • 当完成 N 个节点满二叉树构造时:返回结果数组
    当需要构造左右子树时,就进行自身调用。具体的看代码吧~
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def allPossibleFBT(self, n: int) -> List[Optional[TreeNode]]:res = []if n == 1:return [TreeNode(0)]if n % 2 == 0: # 结点个数必须是奇数return []left_num = 1 # 左子树分配一个节点right_num = n - 2 # 此时n必大于等于3, 右子树可以分配到 n - 1 - 1 = n - 2 个节点while right_num > 0:left_tree = self.allPossibleFBT(left_num) # 递归构造左子树right_tree = self.allPossibleFBT(right_num) # 递归构造右子树# 具体构造过程for i in range(len(left_tree)):for j in range(len(right_tree)):root = TreeNode(0)root.left = left_tree[i]root.right = right_tree[j]res.append(root) # 注意返回的是树的根节点left_num += 2right_num -= 2return res

时间复杂度:O(2n / n \sqrt n n )
空间复杂度:O(n) 递归调用栈

解题思路二:动态规划。关键思路是如果构造节点数目为 n 的真二叉树,此时可以从节点数目序列为 [(1,n−2),(3,n−5),⋯ ,(n−2,1)]的真二叉树中构成,按照所有可能的组合数进行枚举,即可构造成节点数目为 n 的真二叉树。即左子树分配1,3,5, … , n-2个节点。

动规五部曲:定推初遍举

  1. dp定义:所有可能含 n 个节点的 真二叉树
  2. 推导:dp[n] = 节点数目序列为 [(1,n−2),(3,n−5),⋯ ,(n−2,1)]的真二叉树中构成
  3. 初始化:dp[1] = [TreeNode(0)]
  4. 遍历:按照推导公式来for i in range(3, n + 1, 2): for j in range(1, i, 2):
  5. 举例:注意dp[i]是一个列表
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def allPossibleFBT(self, n: int) -> List[Optional[TreeNode]]:if n % 2 == 0: # 结点个数必须是奇数return []dp = [[] for _ in range(n+1)]dp[1] = [TreeNode(0)]for i in range(3, n + 1, 2):for j in range(1, i, 2):for left_tree in dp[j]:for right_tree in dp[i - 1 - j]:root = TreeNode(0, left_tree, right_tree)dp[i].append(root)return dp[n]

时间复杂度:O(2n / n \sqrt n n )
空间复杂度:O(1)返回值不计入空间复杂度。

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

这篇关于LeetCode-894. 所有可能的真二叉树【树 递归 记忆化搜索 动态规划 二叉树】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870464

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1