深度学习理论基础(三)封装数据集及手写数字识别

2024-04-02 06:36

本文主要是介绍深度学习理论基础(三)封装数据集及手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前期准备
  • 一、制作数据集
    • 1. excel表格数据
    • 2. 代码
  • 二、手写数字识别
    • 1. 下载数据集
    • 2. 搭建模型
    • 3. 训练网络
    • 4. 测试网络
    • 5. 保存训练模型
    • 6. 导入已经训练好的模型文件
    • 7. 完整代码

前期准备

必须使用 3 个 PyTorch 内置的实用工具(utils):
⚫ DataSet 用于封装数据集;
⚫ DataLoader 用于加载数据不同的批次;
⚫ random_split 用于划分训练集与测试集。
  

一、制作数据集

  在封装我们的数据集时,必须继承实用工具(utils)中的 DataSet 的类,这个过程需要重写__init__和__getitem__、__len__三个方法,分别是为了加载数据集、获取数据索引、获取数据总量。我们通过代码读取excel表格里面的数据作为数据集。

1. excel表格数据

在这里插入图片描述

2. 代码

为了简单演示,我们将表格的第0列作为输入特征,第1列作为输出特征。

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import matplotlib.pyplot as plt# 制作数据集
class MyData(Dataset):      """继承 Dataset 类"""def __init__(self, filepath):super().__init__()df = pd.read_excel(filepath).values       """ 读取excel数据"""arr = df.astype(np.int32)      """转为 int32 类型数组"""ts = torch.tensor(arr)      """数组转为张量"""ts = ts.to('cuda')      """把训练集搬到 cuda 上"""self.X = ts[:, :1]      """获取第0列的所有行做为输入特征"""self.Y = ts[:, 1:2]      """获取第1列的所有行为输出特征"""self.len = ts.shape[0]    """样本的总数"""  def __getitem__(self, index):return self.X[index], self.Y[index]def __len__(self):return self.lenif __name__ == '__main__':		"""获取数据集"""Data = MyData('label.xlsx')print(Data.X[0])       """输出为:tensor([1020741172], device='cuda:0', dtype=torch.int32)"""print(Data.Y[0])       """输出为:tensor([1], device='cuda:0', dtype=torch.int32) """print(Data.__len__())  """输出为:233 """"""划分训练集与测试集"""train_size = int(len(Data) * 0.7) # 训练集的样本数量test_size = len(Data) - train_size # 测试集的样本数量train_Data, test_Data = random_split(Data, [train_size, test_size])"""批次加载器"""""" 第一个参数:表示要加载的数据集,即之前划分好的 train_Data或test_Data 。"""""" 第二个参数:表示在每个 epoch(训练周期)开始之前是否重新洗牌数据。在训练过程中,通常会将数据进行洗牌,以确保模型能够学习到更加泛化的特征。而测试数据不需要重新洗牌,因为测试集仅用于评估模型的性能,不涉及模型参数的更新"""""" 第三个参数:表示每个批次中的样本数量为 32。也就是说,每次迭代加载器时,它会从训练数据集中加载128个样本。"""train_loader = DataLoader(train_Data, shuffle=True, batch_size=128)test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""打印第一个批次的输入与输出特征"""for inputs, targets in train_loader:print(inputs)print(targets)

二、手写数字识别

1. 下载数据集

在下载数据集之前,要设定转换参数:transform,该参数里解决两个问题:
⚫ ToTensor:将图像数据转为张量,且调整三个维度的顺序为 (C-W-H);C表示通道数,二维灰度图像的通道数为 1,三维 RGB 彩图的通道数为 3。
⚫ Normalize:将神经网络的输入数据转化为标准正态分布,训练更好;根据统计计算,MNIST 训练集所有像素的均值是 0.1307、标准差是 0.3081

"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)

在这里插入图片描述

2. 搭建模型

class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据

3. 训练网络

"""实例化模型"""
model = DNN().to('cuda:0') def train_net():"""1.损失函数的选择"""loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数"""2.优化算法的选择"""learning_rate = 0.01              # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5                 # momentum(动量),它使梯度下降算法有了力与惯性)"""3.训练"""epochs = 5losses = []         """记录损失函数变化的列表"""for epoch in range(epochs):for (x, y) in train_loader:     """从批次加载器中获取小批次的x与y"""x, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)               #将样本放入实例化的模型中,这里自动调用forward方法。loss = loss_fn(Pred, y)       # 计算损失函数losses.append(loss.item())    # 记录损失函数的变化optimizer.zero_grad()         # 清理上一轮滞留的梯度loss.backward()               # 一次反向传播optimizer.step()              # 优化内部参数"""4.画损失图"""Fig = plt.figure()plt.plot(range(len(losses)), losses)plt.show()

损失图如下:
在这里插入图片描述

4. 测试网络

测试网络不需要回传梯度。

"""实例化模型"""
model = DNN().to('cuda:0') def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model (x)                             #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')

在这里插入图片描述

5. 保存训练模型

在保存模型前,必须要先进行训练网络去获取和优化模型参数。

if __name__ == '__main__':model = DNN().to('cuda:0') train_net()torch.save(model,'old_model.pth')

6. 导入已经训练好的模型文件

导入训练好的模型文件,我们就不需要再进行训练网络,直接使用测试网络来测试即可。
new_model使用了原有模型文件,我们就需要在测试网络的前向传播中的模型修改为 new_model去进行测试。如下:

"""  假设我们之前保存好的模型文件为:'old_model.pth'  """def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model (x)                         #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':new_model = torch.load('old_model.pth')test_net()

7. 完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt"""------------1.下载数据集----------"""
"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""---------------2.定义模型------------"""
class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据"""-------------3.训练网络-----------"""
def train_net():# 损失函数的选择loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数# 优化算法的选择learning_rate = 0.01  # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5)epochs = 5losses = []  # 记录损失函数变化的列表for epoch in range(epochs):for (x, y) in train_loader:  # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)  # 一次前向传播(小批量)loss = loss_fn(Pred, y)  # 计算损失函数losses.append(loss.item())  # 记录损失函数的变化optimizer.zero_grad()  # 清理上一轮滞留的梯度loss.backward()  # 一次反向传播optimizer.step()  # 优化内部参数"""Fig = plt.figure()""""""plt.plot(range(len(losses)), losses)""""""plt.show()""""""--------------------4.测试网络-----------"""
def test_net():correct = 0total = 0with torch.no_grad():  						 	#该局部关闭梯度计算功能for (x, y) in test_loader: 				 	#获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model(x)  				 	#一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':""" ------- 5.保存模型文件------""""""   model = DNN().to('cuda:0')        """"""   train_net()                       """"""   torch.save(model,'old_model.pth') """""" ------- 6.加载模型文件 ----- """new_model = torch.load('old_model.pth')test_net()

这篇关于深度学习理论基础(三)封装数据集及手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869237

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ