深度学习理论基础(三)封装数据集及手写数字识别

2024-04-02 06:36

本文主要是介绍深度学习理论基础(三)封装数据集及手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前期准备
  • 一、制作数据集
    • 1. excel表格数据
    • 2. 代码
  • 二、手写数字识别
    • 1. 下载数据集
    • 2. 搭建模型
    • 3. 训练网络
    • 4. 测试网络
    • 5. 保存训练模型
    • 6. 导入已经训练好的模型文件
    • 7. 完整代码

前期准备

必须使用 3 个 PyTorch 内置的实用工具(utils):
⚫ DataSet 用于封装数据集;
⚫ DataLoader 用于加载数据不同的批次;
⚫ random_split 用于划分训练集与测试集。
  

一、制作数据集

  在封装我们的数据集时,必须继承实用工具(utils)中的 DataSet 的类,这个过程需要重写__init__和__getitem__、__len__三个方法,分别是为了加载数据集、获取数据索引、获取数据总量。我们通过代码读取excel表格里面的数据作为数据集。

1. excel表格数据

在这里插入图片描述

2. 代码

为了简单演示,我们将表格的第0列作为输入特征,第1列作为输出特征。

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import random_split
import matplotlib.pyplot as plt# 制作数据集
class MyData(Dataset):      """继承 Dataset 类"""def __init__(self, filepath):super().__init__()df = pd.read_excel(filepath).values       """ 读取excel数据"""arr = df.astype(np.int32)      """转为 int32 类型数组"""ts = torch.tensor(arr)      """数组转为张量"""ts = ts.to('cuda')      """把训练集搬到 cuda 上"""self.X = ts[:, :1]      """获取第0列的所有行做为输入特征"""self.Y = ts[:, 1:2]      """获取第1列的所有行为输出特征"""self.len = ts.shape[0]    """样本的总数"""  def __getitem__(self, index):return self.X[index], self.Y[index]def __len__(self):return self.lenif __name__ == '__main__':		"""获取数据集"""Data = MyData('label.xlsx')print(Data.X[0])       """输出为:tensor([1020741172], device='cuda:0', dtype=torch.int32)"""print(Data.Y[0])       """输出为:tensor([1], device='cuda:0', dtype=torch.int32) """print(Data.__len__())  """输出为:233 """"""划分训练集与测试集"""train_size = int(len(Data) * 0.7) # 训练集的样本数量test_size = len(Data) - train_size # 测试集的样本数量train_Data, test_Data = random_split(Data, [train_size, test_size])"""批次加载器"""""" 第一个参数:表示要加载的数据集,即之前划分好的 train_Data或test_Data 。"""""" 第二个参数:表示在每个 epoch(训练周期)开始之前是否重新洗牌数据。在训练过程中,通常会将数据进行洗牌,以确保模型能够学习到更加泛化的特征。而测试数据不需要重新洗牌,因为测试集仅用于评估模型的性能,不涉及模型参数的更新"""""" 第三个参数:表示每个批次中的样本数量为 32。也就是说,每次迭代加载器时,它会从训练数据集中加载128个样本。"""train_loader = DataLoader(train_Data, shuffle=True, batch_size=128)test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""打印第一个批次的输入与输出特征"""for inputs, targets in train_loader:print(inputs)print(targets)

二、手写数字识别

1. 下载数据集

在下载数据集之前,要设定转换参数:transform,该参数里解决两个问题:
⚫ ToTensor:将图像数据转为张量,且调整三个维度的顺序为 (C-W-H);C表示通道数,二维灰度图像的通道数为 1,三维 RGB 彩图的通道数为 3。
⚫ Normalize:将神经网络的输入数据转化为标准正态分布,训练更好;根据统计计算,MNIST 训练集所有像素的均值是 0.1307、标准差是 0.3081

"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)

在这里插入图片描述

2. 搭建模型

class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据

3. 训练网络

"""实例化模型"""
model = DNN().to('cuda:0') def train_net():"""1.损失函数的选择"""loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数"""2.优化算法的选择"""learning_rate = 0.01              # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5                 # momentum(动量),它使梯度下降算法有了力与惯性)"""3.训练"""epochs = 5losses = []         """记录损失函数变化的列表"""for epoch in range(epochs):for (x, y) in train_loader:     """从批次加载器中获取小批次的x与y"""x, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)               #将样本放入实例化的模型中,这里自动调用forward方法。loss = loss_fn(Pred, y)       # 计算损失函数losses.append(loss.item())    # 记录损失函数的变化optimizer.zero_grad()         # 清理上一轮滞留的梯度loss.backward()               # 一次反向传播optimizer.step()              # 优化内部参数"""4.画损失图"""Fig = plt.figure()plt.plot(range(len(losses)), losses)plt.show()

损失图如下:
在这里插入图片描述

4. 测试网络

测试网络不需要回传梯度。

"""实例化模型"""
model = DNN().to('cuda:0') def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model (x)                             #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')

在这里插入图片描述

5. 保存训练模型

在保存模型前,必须要先进行训练网络去获取和优化模型参数。

if __name__ == '__main__':model = DNN().to('cuda:0') train_net()torch.save(model,'old_model.pth')

6. 导入已经训练好的模型文件

导入训练好的模型文件,我们就不需要再进行训练网络,直接使用测试网络来测试即可。
new_model使用了原有模型文件,我们就需要在测试网络的前向传播中的模型修改为 new_model去进行测试。如下:

"""  假设我们之前保存好的模型文件为:'old_model.pth'  """def test_net():correct = 0total = 0with torch.no_grad():                                #该局部关闭梯度计算功能for (x, y) in test_loader:                       #从批次加载器中获取小批次的x与yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model (x)                         #将样本放入实例化的模型中,这里自动调用forward方法。_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':new_model = torch.load('old_model.pth')test_net()

7. 完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt"""------------1.下载数据集----------"""
"""数据转换为tensor数据"""
transform_data = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307, 0.3081)
])"""下载训练集与测试集"""
train_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist/', """下载路径"""train = True, """训练集"""download = True,  """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)
test_Data = datasets.MNIST(root = 'E:/Desktop/Document/4. Python/例程代码/dataset/mnist_test/', """下载路径"""train = False, """非训练集,也就是测试集"""download = True, """如果该路径没有该数据集,就下载"""transform = transform_data """数据集转换参数"""
)"""批次加载器"""
train_loader = DataLoader(train_Data, shuffle=True, batch_size=64)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=64)"""---------------2.定义模型------------"""
class DNN(nn.Module):def __init__(self):''' 搭建神经网络各层 '''super(DNN,self).__init__()self.net = nn.Sequential( # 按顺序搭建各层nn.Flatten(), # 把图像铺平成一维nn.Linear(784, 512), nn.ReLU(), # 第 1 层:全连接层nn.Linear(512, 256), nn.ReLU(), # 第 2 层:全连接层nn.Linear(256, 128), nn.ReLU(), # 第 3 层:全连接层nn.Linear(128, 64), nn.ReLU(), # 第 4 层:全连接层nn.Linear(64, 10) # 第 5 层:全连接层)def forward(self, x):''' 前向传播 '''y = self.net(x) # x 即输入数据return y # y 即输出数据"""-------------3.训练网络-----------"""
def train_net():# 损失函数的选择loss_fn = nn.CrossEntropyLoss()  # 自带 softmax 激活函数# 优化算法的选择learning_rate = 0.01  # 设置学习率optimizer = torch.optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5)epochs = 5losses = []  # 记录损失函数变化的列表for epoch in range(epochs):for (x, y) in train_loader:  # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x)  # 一次前向传播(小批量)loss = loss_fn(Pred, y)  # 计算损失函数losses.append(loss.item())  # 记录损失函数的变化optimizer.zero_grad()  # 清理上一轮滞留的梯度loss.backward()  # 一次反向传播optimizer.step()  # 优化内部参数"""Fig = plt.figure()""""""plt.plot(range(len(losses)), losses)""""""plt.show()""""""--------------------4.测试网络-----------"""
def test_net():correct = 0total = 0with torch.no_grad():  						 	#该局部关闭梯度计算功能for (x, y) in test_loader: 				 	#获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = new_model(x)  				 	#一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum((predicted == y))total += y.size(0)print(f'测试集精准度: {100 * correct / total} %')if __name__ == '__main__':""" ------- 5.保存模型文件------""""""   model = DNN().to('cuda:0')        """"""   train_net()                       """"""   torch.save(model,'old_model.pth') """""" ------- 6.加载模型文件 ----- """new_model = torch.load('old_model.pth')test_net()

这篇关于深度学习理论基础(三)封装数据集及手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869237

相关文章

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert