【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型

2024-04-02 05:12

本文主要是介绍【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型

BRT,即Boosted Regression Trees(增强回归树),是一种用于回归问题的集成学习方法。它结合了多个决策树模型,通过逐步改进的方式来提高整体模型的预测性能。BRT的核心思想是利用多个弱学习器(在这个情况下是决策树)的组合来构建一个强学习器。

一、模型介绍

1、工作原理

BRT的工作原理基于提升(Boosting)策略,特别是AdaBoost(Adaptive Boosting)算法的变种。在每一轮迭代中,BRT都会执行以下步骤:

初始化数据权重分布:开始时,每个训练样本都被赋予相等的权重。

构建决策树:使用当前的数据权重分布来训练一个新的决策树。这个决策树通常是一个简单的、深度较浅的树,被称为弱学习器。

计算预测误差:评估新训练的决策树在整个数据集上的预测误差。

更新数据权重:根据预测误差,增加那些被错误分类的样本的权重,减少正确分类的样本的权重。这样,接下来的迭代将更加关注那些难以正确预测的样本。

减弱预测误差:将每个决策树的预测误差进行缩减,以防止过拟合。这通常通过一个学习率参数来控制。

累加模型预测:将新训练的决策树的预测结果与之前所有迭代中的树的预测结果相加,形成最终的模型预测。

这个过程会重复进行,直到达到预定的迭代次数或者模型性能不再显著提升。

2、特点

适应性强:BRT能够适应各种类型的数据,包括连续型和分类型变量。
处理缺失值:BRT可以处理数据中的缺失值,这在实际应用中非常有用。
提供概率输出:BRT可以输出分类问题的概率估计,而不仅仅是硬分类结果。
可解释性:虽然BRT是一个集成模型,但它的组成单元是决策树,因此相比其他集成方法如随机森林或梯度提升树,BRT的可解释性更强。

3、应用

BRT在各种回归问题中都有广泛的应用,包括但不限于:

预测房价
销售预测
能源消耗预测
生物统计学中的数据分析
优势与局限性

4、优势:

BRT通过集成多个决策树来提高预测精度。
能够处理复杂的数据集,包括非线性和高维数据。
可以自然地处理不同类型的数据,包括数值型和类别型数据。

5、局限性:

相对于单棵树或浅层模型,BRT模型可能更容易过拟合,尤其是在数据量较少的情况下。
模型的训练和预测过程可能需要较长的计算时间,特别是当树的数量较多时。
总的来说,BRT是一种强大的集成学习方法,适用于各种回归问题,并且在实际应用中表现出色。然而,为了获得最佳性能,可能需要仔细调整模型参数,并根据具体问题进行模型选择和优化。

二、代码实现

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';% BRT模型参数
leafNum=50; %最大叶节点数量
treeNum=1000;%种群数
nu=0.1;%更新系数
%训练模型  %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output)';
T_sim2 = mapminmax('reverse', t_sim2, ps_output)';%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

三、效果展示

在这里插入图片描述

四、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“102期”以及相应指令,即可获取对应下载方式。

这篇关于【MATLAB第102期】基于MATLAB的BRT增强回归树多输入单输出回归预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/869056

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU