蓝桥备赛——矩阵读入

2024-03-31 20:44
文章标签 蓝桥 矩阵 备赛 读入

本文主要是介绍蓝桥备赛——矩阵读入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述 

如上图所示,是一道有关二维前缀和的问题,因为涉及到二维,肯定就是以矩阵的形式进行读入的。

为此,针对矩阵的读入形式进行总结,可以大致总结出两种类型如下:

二维列表推导式

n, m, k = map(int, input().split())
mat = []
for i in range(n):mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):for j in range(m):pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

 可以看到上面代码的

pre = [[0 for _ in range(m)] for _ in range(n + 1)]

表示的是对于第一个[ ]中的元素是生成一个行向量,对于外面的第二个[ ]表示的是生成多少行的列表。

经过上面的代码,可以获得一个列表为

即获得了一个所有元素都为0的列表。后面再不停地读入元素进行原内容覆盖。

自创的方法

n,m,k=map(int,input().split())
mas=[]
for i in range(n):matrix = []matrix.extend(map(int,input().split()))mas.append(matrix)
print(mas)

 同样是先读入数据,不过需要额外创建一个列表作为中转,将数据读入后,再将其作为整体append到一个新的列表,即可达到上面二维列表推导式的效果。

与上面方法不同的地方是,不需要再重新将元素全部覆盖,所录入列表的即为最终数据。

AC Code

n, m, k = map(int, input().split())
mat = []
for i in range(n):mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):for j in range(m):pre[i][j] = pre[i - 1][j] + mat[i - 1][j]
ans = 0
for i in range(n):for j in range(i, n):l, r, sum = 0, 0, 0while r < m:sum += pre[j + 1][r] - pre[i][r]while sum > k:sum -= pre[j + 1][l] - pre[i][l]l += 1ans += r - l + 1r += 1
print(ans)

现在来解释一下上面的代码

n, m, k = map(int, input().split())
mat = []
for i in range(n):mat.append(list(map(int, input().split())))
pre = [[0 for _ in range(m)] for _ in range(n + 1)]
for i in range(1, n + 1):for j in range(m):pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

这块代码的作用就是读入相关数据

ans = 0
for i in range(n):for j in range(i, n):l, r, sum = 0, 0, 0while r < m:sum += pre[j + 1][r] - pre[i][r]while sum > k:sum -= pre[j + 1][l] - pre[i][l]l += 1ans += r - l + 1r += 1
print(ans)

上面代码的作用就是对应:

for i in range(1, n + 1): for j in range(m): pre[i][j] = pre[i - 1][j] + mat[i - 1][j]:计算前缀和矩阵pre。对于pre[i][j],表示原始矩阵中第i-1行(因为前缀和矩阵行数比原始矩阵多了1)以及前j列的元素之和。

ans = 0:初始化变量ans,用于记录满足条件的子矩阵数量。

for i in range(n): for j in range(i, n)::遍历所有可能的子矩阵的上边界i和下边界j

l, r, sum = 0, 0, 0:初始化左边界l、右边界r以及子矩阵元素之和sum

while r < m: sum += pre[j + 1][r] - pre[i][r]:在子矩阵的右边界r小于列数m时,计算子矩阵在当前列的元素之和。

while sum > k: sum -= pre[j + 1][l] - pre[i][l] l += 1:如果子矩阵的元素之和超过了限定值k,则移动左边界l,直到子矩阵的元素之和不再超过k

ans += r - l + 1:更新满足条件的子矩阵数量。

r += 1:向右移动子矩阵的右边界r

print(ans):输出满足条件的子矩阵数量。

该算法的时间复杂度为O(n^3 * m),因为有三层嵌套循环分别遍历行、列和子矩阵。

 

这篇关于蓝桥备赛——矩阵读入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865301

相关文章

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

C语言蓝桥杯

一、语言基础 竞赛常用库函数 最值查询 min_element和max_element在vector(迭代器的使用) nth_element函数的使用 例题lanqiao OJ 497成绩分析 第一种用min_element和max_element函数的写法 第二种用min和max的写法 二分查找 二分查找只能对数组操作 binary_s

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

【UVA】10003-Cutting Sticks(动态规划、矩阵链乘)

一道动态规划题,不过似乎可以用回溯水过去,回溯的话效率很烂的。 13988658 10003 Cutting Sticks Accepted C++ 1.882 2014-08-04 09:26:49 AC代码: #include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include

算法练习题17——leetcode54螺旋矩阵

题目描述 给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。  代码 import java.util.*;class Solution {public List<Integer> spiralOrder(int[][] matrix) {// 用于存储螺旋顺序遍历的结果List<Integer> result = new ArrayList

线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录 1.特征值和特征向量1.1 特征值和特征向量的定义1.2 特征值和特征向量的求法1.3 特征值特征向量的主要结论 2.相似2.1 相似的定义2.2 相似的性质2.3 相似的结论 3.相似对角化4.实对称矩阵4.1 实对称矩阵的基本性质4.2 施密特正交化 5.重难点题型总结5.1 判断矩阵能否相似对角化5.2 已知两个矩阵相似,求某个矩阵中的未知参数5.3 相似时,求可逆矩阵P,使

最大子矩阵和问题归纳总结

一,最大子矩阵问题: 给定一个n*n(0< n <=100)的矩阵,请找到此矩阵的一个子矩阵,并且此子矩阵的各个元素的和最大,输出这个最大的值。 Example: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 其中左上角的子矩阵: 9 2 -4 1 -1 8 此子矩阵的值为9+2+(-4)+1+(-1)+8=15。 二,分析 子矩阵是在矩阵