算法学习14:数论(质数,约数,欧拉函数,快速幂)

2024-03-31 14:36

本文主要是介绍算法学习14:数论(质数,约数,欧拉函数,快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习14:数论(质数,约数,欧拉函数,快速幂)


文章目录

  • 算法学习14:数论(质数,约数,欧拉函数,快速幂)
  • 前言
  • 要记忆的模版:
  • 一、质数
    • 1.质数的判定:试除法
    • 2.质因数的分解:试除法
    • 3.筛质数:埃氏筛、线性筛
  • 二、约数
    • 1.试除法求约数
    • 2.求约数个数、约数之和(懵懵的)
    • 3.辗转相处法求最大公约数(欧几里得定理)
    • 4.扩展欧几里得定理:
      • 线性同余方程:(和扩展欧几里得定理一样,不太理解,待以后解决)
  • 三、欧拉函数:1~n中,与n互质的数的个数叫做欧拉函数
    • 1.例题1:求一个数n的欧拉函数phi(n)
    • 2.例题2:给定一个正整数n,求1~n中每个数的欧拉函数之和
  • 四、快速幂
    • 1.例题:给定a,k,p,求出a^k mod p 的值
    • 2.给定a,p,其中p是质数,求a%p的乘法逆元,不存在则输出impossible
    • 在这里插入图片描述
  • 总结


前言

数论这个不分涉及到很多**“数学推导”**的部分,自我感觉这部分很难去理解,一些点很乱,须要后面遇到实际问题的时候去优化。

须要达成的目标:了解一些简单的数论知识,有个印象。比如:筛,欧几里得定理,快速幂。


在这里插入图片描述



要记忆的模版:

// 试除法求约数:
bool is_prime(int n)
{if(n < 2) return false;for(int i = 2; i <= n / i; i ++)if(n % i == 0) return false;return true; } // 分解质因数:
void divide(int n)
{for(int i = 2; i <= n / i; i ++)if(n % i == 0){while(n % i == 0) 	n /= i;printf("%d", i);}if(n > 1) printf("%d", n);					} // 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3


提示:以下是本篇文章正文内容:

一、质数

1.质数的判定:试除法


bool is_prime(int n)
{if(n < 2) return false;for(int i = 2; i <= n / i; i ++)if(n % i == 0) return false;return true; } 


2.质因数的分解:试除法

c++求解质因数,了解什么是质因数



void divide(int n)
{for(int i = 2; i <= n / i; i ++)if(n % i == 0){while(n % i == 0) 	n /= i;printf("%d", i);}if(n > 1) printf("%d", n);					} // 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3void divide(int n)
{int i = 2;do {while(n % i==0) {cout << i;n /= i;if(n != 1) cout<<"*";}i++;}while(n!=1);
}// 筛质数:
// 埃氏筛 (对朴素筛的优化) void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) {primes[cnt ++] = i;// 标记质数的倍数 for(int j = i; j <= n; j += i) st[j] = true;}} } // 线性筛 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;for(in j = 0; primes[j] <= n / j; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) break; }}} 

3.筛质数:埃氏筛、线性筛


在这里插入图片描述



// 例题:给定一个n,求出1~n中质数的个数。
int primes[N], cnt;
bool st[N];// false:质数, true:合数 // primes:存储的是质数,cnt:质数的个数 // 朴素筛法 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;// 标记倍数 for(int j = i; j <= n; j += i) st[j] = true;} } // 埃氏筛 (对朴素筛的优化) void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) {primes[cnt ++] = i;// 标记质数的倍数 for(int j = i; j <= n; j += i) st[j] = true;}} } // 线性筛 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;for(in j = 0; primes[j] <= n / j; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) break; }}} 


二、约数

1.试除法求约数

// 给定一个n,求出n的所有约数
vector<int> get_divisors(int n)
{for(int i = 1; i <= n / i; i ++)// 遍历 if(n % i == 0){res.push_back(i);// 防止i*i == n ,就是n是i的平方 if(i != n / i) res.push_back(n / i);}sort(res.begin(), res.end());return res;
}

2.求约数个数、约数之和(懵懵的)



在这里插入图片描述


在这里插入图片描述



// 给定n个整数,请求出这些数约数的个数,
// 请求出这些数的乘积的约数之和。
// 思考:求一个和求一堆是一样的问题
typedef long long LL;unorder_map<int, int> primes;
while(n --)
{int x;cin >> x;for(int i = 2; i <= x / i; i ++)while(x % i == 0){x /= i;primes[i] ++;// 哈希表的:key:i,value:++ }
}
LL res = 1;// res为约数的个数 
for(auto prime : primes) 
res = res * (prime.second + 1) % mod;LL res = 1;// res为约数之和 
for(auto prime : primes)
{int p = prime.first, a = prime.second;LL t = 1;while(a --) t = (t * p + 1) % mod;res = res * t % mod;// 遍历完 } 

3.辗转相处法求最大公约数(欧几里得定理)

求a和b的最大公约数

#include <iostream>using namespace std;int gcd(int a, int b)
{return b ? gcd(b, a % b) : a;
}int main()
{int n;scanf("%d", &n);while(n --){int a, b;scanf("%d%d", &a, &b);printf("%d\n", gcd(a, b));}return 0;
}

在这里插入图片描述



4.扩展欧几里得定理:



在这里插入图片描述



// 给定n对正整数a,b,对于每对数,求出一组x,y,使其满足ax = gcd(a,b);
// 还没理解清楚 
#include <iostream>using namespace std;// 传递x,y的引用。 
int exgcd(int a, int b, int &x, int &y)
{if(!b){x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y -= a / b * x;return d;// d??? 
}int main()
{int n;scanf("%d", &n);while(n --){int a, b, x, y;scanf("%d%d", &a, &b);exgcd(a, b, x, y);printf("%d %d", x, y);}return 0;
}


线性同余方程:(和扩展欧几里得定理一样,不太理解,待以后解决)

给定n组数据a,b,m,对于每一组数据,取出一个x,使其满足ax = b(%m)


在这里插入图片描述



在这里插入图片描述



三、欧拉函数:1~n中,与n互质的数的个数叫做欧拉函数



在这里插入图片描述



1.例题1:求一个数n的欧拉函数phi(n)

// 求一个数n的欧拉函数phi(n)
#include <iostream>
#include <algorithm>using namespace std;int main()
{int n;cin >> n;while(n --){int a;cin >> a;int res = a;for(int i = 2; i <= a / i; i ++){if(a % i == 0){// res = res * (1 - 1 / a);res = res / a * (a - 1);// 对除号的变形 while(a % i == 0) a /= i;}}if(a > 1) res = res / a * (a - 1);cout << res << endl; } return 0;
}

在这里插入图片描述



2.例题2:给定一个正整数n,求1~n中每个数的欧拉函数之和

// 给定一个正整数n,求1~n中每个数的欧拉函数之和
#include <iostream>
#include <algorithm>using namespace std;typedef long long LL;const int N = 1e6 + 10;int primes[N], cnt;
int phi[N];
bool st[N];LL get_eulers(int n)
{phi[1] = 1;for(int i = 2; i <= n; i ++){if(!st[i]){primes[cnt ++] = i;phi[i] = i - 1;// 注意1.}for(int j = 0; primes[j] <= n / i; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) {phi[primes[j] * i] = phi[i] * primes[j];// 注意2 break;}phi[primes[j] * i] = phi[i] * (primes[j] - 1);// 注意3 }}LL res = 0;for(int i = 1; i <= n; i ++) res += phi[i];// 注意4 return res; 
}int main()
{int n;cin >> n;cout << get_eulers(n) << endl;	return 0;
}

在这里插入图片描述



四、快速幂

1.例题:给定a,k,p,求出a^k mod p 的值



在这里插入图片描述



#include <iostream>
#include <algorithm>using namespace std;typedef long long LL;// a^k mod p
int qmi(int a, int k, int p)
{int res = 1;while(k){// k的二进制末位为1 if(k & 1) res = (LL) res * a % p;k >>= 1;a = (LL) a * a % p;// a的平方 }return res;
}int main()
{int n;scanf("%d", &n);while(n --){int a, k, p;scanf("%d%d%d", &a, &k, &p);printf("%d", qmi(a, k, p));}return 0;} 

在这里插入图片描述



2.给定a,p,其中p是质数,求a%p的乘法逆元,不存在则输出impossible



在这里插入图片描述



在这里插入图片描述

总结

提示:这里对文章进行总结:
💕💕💕

这篇关于算法学习14:数论(质数,约数,欧拉函数,快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864567

相关文章

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景