算法学习14:数论(质数,约数,欧拉函数,快速幂)

2024-03-31 14:36

本文主要是介绍算法学习14:数论(质数,约数,欧拉函数,快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法学习14:数论(质数,约数,欧拉函数,快速幂)


文章目录

  • 算法学习14:数论(质数,约数,欧拉函数,快速幂)
  • 前言
  • 要记忆的模版:
  • 一、质数
    • 1.质数的判定:试除法
    • 2.质因数的分解:试除法
    • 3.筛质数:埃氏筛、线性筛
  • 二、约数
    • 1.试除法求约数
    • 2.求约数个数、约数之和(懵懵的)
    • 3.辗转相处法求最大公约数(欧几里得定理)
    • 4.扩展欧几里得定理:
      • 线性同余方程:(和扩展欧几里得定理一样,不太理解,待以后解决)
  • 三、欧拉函数:1~n中,与n互质的数的个数叫做欧拉函数
    • 1.例题1:求一个数n的欧拉函数phi(n)
    • 2.例题2:给定一个正整数n,求1~n中每个数的欧拉函数之和
  • 四、快速幂
    • 1.例题:给定a,k,p,求出a^k mod p 的值
    • 2.给定a,p,其中p是质数,求a%p的乘法逆元,不存在则输出impossible
    • 在这里插入图片描述
  • 总结


前言

数论这个不分涉及到很多**“数学推导”**的部分,自我感觉这部分很难去理解,一些点很乱,须要后面遇到实际问题的时候去优化。

须要达成的目标:了解一些简单的数论知识,有个印象。比如:筛,欧几里得定理,快速幂。


在这里插入图片描述



要记忆的模版:

// 试除法求约数:
bool is_prime(int n)
{if(n < 2) return false;for(int i = 2; i <= n / i; i ++)if(n % i == 0) return false;return true; } // 分解质因数:
void divide(int n)
{for(int i = 2; i <= n / i; i ++)if(n % i == 0){while(n % i == 0) 	n /= i;printf("%d", i);}if(n > 1) printf("%d", n);					} // 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3


提示:以下是本篇文章正文内容:

一、质数

1.质数的判定:试除法


bool is_prime(int n)
{if(n < 2) return false;for(int i = 2; i <= n / i; i ++)if(n % i == 0) return false;return true; } 


2.质因数的分解:试除法

c++求解质因数,了解什么是质因数



void divide(int n)
{for(int i = 2; i <= n / i; i ++)if(n % i == 0){while(n % i == 0) 	n /= i;printf("%d", i);}if(n > 1) printf("%d", n);					} // 例子:2310 = 2 * 3 * 5 * 7 * 11 
// 24 = 2 * 2 * 2 * 3void divide(int n)
{int i = 2;do {while(n % i==0) {cout << i;n /= i;if(n != 1) cout<<"*";}i++;}while(n!=1);
}// 筛质数:
// 埃氏筛 (对朴素筛的优化) void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) {primes[cnt ++] = i;// 标记质数的倍数 for(int j = i; j <= n; j += i) st[j] = true;}} } // 线性筛 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;for(in j = 0; primes[j] <= n / j; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) break; }}} 

3.筛质数:埃氏筛、线性筛


在这里插入图片描述



// 例题:给定一个n,求出1~n中质数的个数。
int primes[N], cnt;
bool st[N];// false:质数, true:合数 // primes:存储的是质数,cnt:质数的个数 // 朴素筛法 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;// 标记倍数 for(int j = i; j <= n; j += i) st[j] = true;} } // 埃氏筛 (对朴素筛的优化) void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) {primes[cnt ++] = i;// 标记质数的倍数 for(int j = i; j <= n; j += i) st[j] = true;}} } // 线性筛 void get_prime(int n)
{for(int i = 2; i <= n; i ++){if(!st[i]) primes[cnt ++] = i;for(in j = 0; primes[j] <= n / j; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) break; }}} 


二、约数

1.试除法求约数

// 给定一个n,求出n的所有约数
vector<int> get_divisors(int n)
{for(int i = 1; i <= n / i; i ++)// 遍历 if(n % i == 0){res.push_back(i);// 防止i*i == n ,就是n是i的平方 if(i != n / i) res.push_back(n / i);}sort(res.begin(), res.end());return res;
}

2.求约数个数、约数之和(懵懵的)



在这里插入图片描述


在这里插入图片描述



// 给定n个整数,请求出这些数约数的个数,
// 请求出这些数的乘积的约数之和。
// 思考:求一个和求一堆是一样的问题
typedef long long LL;unorder_map<int, int> primes;
while(n --)
{int x;cin >> x;for(int i = 2; i <= x / i; i ++)while(x % i == 0){x /= i;primes[i] ++;// 哈希表的:key:i,value:++ }
}
LL res = 1;// res为约数的个数 
for(auto prime : primes) 
res = res * (prime.second + 1) % mod;LL res = 1;// res为约数之和 
for(auto prime : primes)
{int p = prime.first, a = prime.second;LL t = 1;while(a --) t = (t * p + 1) % mod;res = res * t % mod;// 遍历完 } 

3.辗转相处法求最大公约数(欧几里得定理)

求a和b的最大公约数

#include <iostream>using namespace std;int gcd(int a, int b)
{return b ? gcd(b, a % b) : a;
}int main()
{int n;scanf("%d", &n);while(n --){int a, b;scanf("%d%d", &a, &b);printf("%d\n", gcd(a, b));}return 0;
}

在这里插入图片描述



4.扩展欧几里得定理:



在这里插入图片描述



// 给定n对正整数a,b,对于每对数,求出一组x,y,使其满足ax = gcd(a,b);
// 还没理解清楚 
#include <iostream>using namespace std;// 传递x,y的引用。 
int exgcd(int a, int b, int &x, int &y)
{if(!b){x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y -= a / b * x;return d;// d??? 
}int main()
{int n;scanf("%d", &n);while(n --){int a, b, x, y;scanf("%d%d", &a, &b);exgcd(a, b, x, y);printf("%d %d", x, y);}return 0;
}


线性同余方程:(和扩展欧几里得定理一样,不太理解,待以后解决)

给定n组数据a,b,m,对于每一组数据,取出一个x,使其满足ax = b(%m)


在这里插入图片描述



在这里插入图片描述



三、欧拉函数:1~n中,与n互质的数的个数叫做欧拉函数



在这里插入图片描述



1.例题1:求一个数n的欧拉函数phi(n)

// 求一个数n的欧拉函数phi(n)
#include <iostream>
#include <algorithm>using namespace std;int main()
{int n;cin >> n;while(n --){int a;cin >> a;int res = a;for(int i = 2; i <= a / i; i ++){if(a % i == 0){// res = res * (1 - 1 / a);res = res / a * (a - 1);// 对除号的变形 while(a % i == 0) a /= i;}}if(a > 1) res = res / a * (a - 1);cout << res << endl; } return 0;
}

在这里插入图片描述



2.例题2:给定一个正整数n,求1~n中每个数的欧拉函数之和

// 给定一个正整数n,求1~n中每个数的欧拉函数之和
#include <iostream>
#include <algorithm>using namespace std;typedef long long LL;const int N = 1e6 + 10;int primes[N], cnt;
int phi[N];
bool st[N];LL get_eulers(int n)
{phi[1] = 1;for(int i = 2; i <= n; i ++){if(!st[i]){primes[cnt ++] = i;phi[i] = i - 1;// 注意1.}for(int j = 0; primes[j] <= n / i; j ++){st[primes[j] * i] = true;if(i % primes[j] == 0) {phi[primes[j] * i] = phi[i] * primes[j];// 注意2 break;}phi[primes[j] * i] = phi[i] * (primes[j] - 1);// 注意3 }}LL res = 0;for(int i = 1; i <= n; i ++) res += phi[i];// 注意4 return res; 
}int main()
{int n;cin >> n;cout << get_eulers(n) << endl;	return 0;
}

在这里插入图片描述



四、快速幂

1.例题:给定a,k,p,求出a^k mod p 的值



在这里插入图片描述



#include <iostream>
#include <algorithm>using namespace std;typedef long long LL;// a^k mod p
int qmi(int a, int k, int p)
{int res = 1;while(k){// k的二进制末位为1 if(k & 1) res = (LL) res * a % p;k >>= 1;a = (LL) a * a % p;// a的平方 }return res;
}int main()
{int n;scanf("%d", &n);while(n --){int a, k, p;scanf("%d%d%d", &a, &k, &p);printf("%d", qmi(a, k, p));}return 0;} 

在这里插入图片描述



2.给定a,p,其中p是质数,求a%p的乘法逆元,不存在则输出impossible



在这里插入图片描述



在这里插入图片描述

总结

提示:这里对文章进行总结:
💕💕💕

这篇关于算法学习14:数论(质数,约数,欧拉函数,快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/864567

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.