支持向量机(一)线性可分的支持向量机与硬间隔最大化

2024-03-30 18:18

本文主要是介绍支持向量机(一)线性可分的支持向量机与硬间隔最大化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        支持向量机其实和感知机的模型思想挺相似的,都是找出一个分离超平面对数据进行二分类。它是定义在特征空间上的间隔最大的线性分类器,这个间隔最大化使它区别于感知机;感知机通过迭代算法找出的分离超平面可以是不唯一的,但是支持向量机由于有最大化间隔的限制,即所有的支持向量点到分离超平面的距离之和是最大的,所以它的分离超平面是唯一的;实际上支持向量机还有核技巧,即数据本来是非线性可分的,但是通过映射(核技巧)将其转化为线性可分,所以它也是个非线性分类器。

        感知机必须对线性可分的数据集有效,但是支持向量机不仅对线性可分的数据有效,也对线性不可分的数据有效;其可以分为三种情况:

  1. 当数据线性可分的时候,通过硬间隔最大化产生线性可分的支持向量机,也叫硬间隔支持向量机)。
  2. 当数据线性近似可分的时候,通过软件各最大化产生线性支持向量机,也叫软件各支持向量机。
  3. 当数据线性不可分的时候,通过核技巧即软件各最大化,学习非线性支持向量机。

    我们这里先介绍线性可分的支持向量机。

  1. 函数间隔

        对于线性可分的支持向量机,我们需要找出一个超平面(对于二维的数据就是一条直线),将所以的数据点分开,就如下图所示:

                                                             

        中间的那条直线,就是我们需要求的直线L:。对于点xi,如果wxi+b>0,则我们可以判断点在直线的上方,如果wxi+b<0则我们可以判断点在直线的下方,其中|wxi+b|可以相对的表示点到直线的远近,越远我们就可以认为对这个分类结果越确信。其中wx+b的符号与类标记y的符号是否一致能够表示分类是否正确。假设对于对于所有的样本点(xi,yi)都分类正确,则yi的符号和wxi+b的符号是相同的yi(wxi+b)>0,否则是相反的yi(wxi+b)<0,所以我们可以用来表示分类的正确性以及确信度ÿ

这篇关于支持向量机(一)线性可分的支持向量机与硬间隔最大化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/862220

相关文章

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

Vector3 三维向量

Vector3 三维向量 Struct Representation of 3D vectors and points. 表示3D的向量和点。 This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doin

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

Golang支持平滑升级的HTTP服务

前段时间用Golang在做一个HTTP的接口,因编译型语言的特性,修改了代码需要重新编译可执行文件,关闭正在运行的老程序,并启动新程序。对于访问量较大的面向用户的产品,关闭、重启的过程中势必会出现无法访问的情况,从而影响用户体验。 使用Golang的系统包开发HTTP服务,是无法支持平滑升级(优雅重启)的,本文将探讨如何解决该问题。 一、平滑升级(优雅重启)的一般思路 一般情况下,要实现平滑

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n