图像分类实战:深度学习在CIFAR-10数据集上的应用

2024-03-30 06:28

本文主要是介绍图像分类实战:深度学习在CIFAR-10数据集上的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.前言

        图像分类是计算机视觉领域的一个核心任务,算法能够自动识别图像中的物体或场景,并将其归类到预定义的类别中。近年来,深度学习技术的发展极大地推动了图像分类领域的进步。CIFAR-10数据集作为计算机视觉领域的一个经典小型数据集,为研究者提供了一个理想的实验平台,用于验证和比较不同的图像分类算法。本文将介绍CIFAR-10数据集的基本情况和加载方法,并展示如何构建与训练一个卷积神经网络(CNN)模型来进行图像分类,最后对模型的性能进行评估与可视化。

2.数据集介绍与加载

        CIFAR-10数据集由加拿大高等研究院(Canadian Institute for Advanced Research, CIFAR)发布,是计算机视觉领域广泛使用的基准数据集之一。它包含了10个类别(飞机、汽车、鸟类、猫、鹿、狗、青蛙、船、卡车、马)的彩色图像,每类有6,000张图像,共计60,000张。所有图像尺寸统一为32x32像素,且已进行标准化处理,其色彩模式为RGB。数据集被划分为50,000张训练图像和10,000张测试图像,保证了训练集与测试集的均衡分布。

        数据加载

        使用Python的tensorflow.keras.datasets模块加载CIFAR-10数据集,同时进行必要的预处理,如归一化和标签转换。

import tensorflow as tf# 加载CIFAR-10数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()# 数据归一化
x_train, x_test = x_train / 255.0, x_test / 255.0# 将标签转换为one-hot编码
y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

3.构建与训练CNN模型

        ResNet(Residual Neural Network)是一种深度残差学习网络,通过引入残差块解决了深度神经网络训练过程中的梯度消失和爆炸问题,从而能够构建和训练极深的模型,显著提升模型的性能和泛化能力。

        关于CNN模型的更多介绍,请看这篇文章:

卷积神经网络(CNN):图像识别的强大工具-CSDN博客文章浏览阅读795次,点赞9次,收藏18次。卷积神经网络是一种强大的图像识别工具,它能够自动学习图像的特征,并在各种图像识别任务中取得出色的效果。通过使用深度学习框架和大量的训练数据,我们可以构建出高效准确的卷积神经网络模型,实现对图像的分类、识别等任务。希望这篇文章能够帮助你更好地理解卷积神经网络在图像识别中的应用。如果你有任何问题或需要进一步的帮助,请随时提问。https://blog.csdn.net/meijinbo/article/details/137015665

3.1.构建模型

        使用Keras构建一个适用于CIFAR-10数据集的小型ResNet模型。

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, Add, MaxPooling2D, GlobalAveragePooling2D, Densedef residual_block(input_tensor, filters, strides=1, use_projection=False):shortcut = input_tensorif use_projection:shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='valid')(shortcut)shortcut = BatchNormalization()(shortcut)x = Conv2D(filters, kernel_size=3, strides=strides, padding='same')(input_tensor)x = BatchNormalization()(x)x = Activation('relu')(x)x = Conv2D(filters, kernel_size=3, strides=1, padding='same')(x)x = BatchNormalization()(x)if strides != 1 or input_tensor.shape[-1] != filters:shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='valid')(shortcut)shortcut = BatchNormalization()(shortcut)x = Add()([shortcut, x])x = Activation('relu')(x)return xdef build_resnet():model = Sequential()model.add(Conv2D(16, kernel_size=3, padding='same', input_shape=(32, 32, 3)))model.add(BatchNormalization())model.add(Activation('relu'))for _ in range(2):model.add(residual_block(model.output, 16))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(residual_block(model.output, 32, strides=2, use_projection=True))for _ in range(2):model.add(residual_block(model.output, 32))model.add(GlobalAveragePooling2D())model.add(Dense(10, activation='softmax'))return modelresnet_model = build_resnet()
resnet_model.summary()

3.2.模型训练

        配置模型训练参数,启动训练过程,并监控训练进度。

resnet_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])history = resnet_model.fit(x_train, y_train,batch_size=128,epochs=100,validation_data=(x_test, y_test),verbose=1)

4.模型性能评估与可视化

4.1.性能评估

        评估模型在测试集上的最终性能指标。

test_loss, test_acc = resnet_model.evaluate(x_test, y_test, verbose=2)
print(f'Test accuracy: {test_acc:.4f}')

 4.2.可视化

        绘制训练过程中损失和准确率曲线,以直观了解模型收敛情况与过拟合风险。

import matplotlib.pyplot as pltdef plot_history(history):plt.figure(figsize=(12, 6))plt.subplot(1, 2, 1)plt.plot(history.history['accuracy'], label='Training Accuracy')plt.plot(history.history['val_accuracy'], label='Validation Accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.legend()plt.subplot(1, 2, 2)plt.plot(history.history['loss'], label='Training Loss')plt.plot(history.history['val_loss'], label='Validation Loss')plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend()plt.show()plot_history(history)  # 显示训练过程中的准确率与损失曲线

        以下是基于PyTorch的实现:

import torch.nn as nn  
import torch.nn.functional as F  class SimpleCNN(nn.Module):  def __init__(self):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 6, 5)  self.pool = nn.MaxPool2d(2, 2)  self.conv2 = nn.Conv2d(6, 16, 5)  self.fc1 = nn.Linear(16 * 5 * 5, 120)  self.fc2 = nn.Linear(120, 84)  self.fc3 = nn.Linear(84, 10)  def forward(self, x):  x = self.pool(F.relu(self.conv1(x)))  x = self.pool(F.relu(self.conv2(x)))  x = x.view(-1, 16 * 5 * 5)  x = F.relu(self.fc1(x))  x = F.relu(self.fc2(x))  x = self.fc3(x)  return x  # 实例化模型、定义损失函数和优化器  
model = SimpleCNN()  
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)  # 训练模型  
for epoch in range(2):  # 假设我们训练两个epoch  running_loss = 0.0  for i, data in enumerate(trainloader, 0):  inputs, labels = data  optimizer.zero_grad()  outputs = model(inputs)  loss = criterion(outputs, labels)  loss.backward()  optimizer.step()  running_loss += loss.item()  if i % 2000 == 1999:  # 每2

 5.总结

        通过以上步骤,我们已经完成了在CIFAR-10数据集上使用深度学习进行图像分类的全过程。从数据集的介绍与加载,到构建并训练ResNet模型,再到模型性能的评估与可视化,这一系列操作展示了如何将理论知识应用于实际问题,揭示了深度学习在图像分类任务中的强大能力。实践中,可根据具体需求调整模型结构、优化策略等参数以进一步提升模型性能。

这篇关于图像分类实战:深度学习在CIFAR-10数据集上的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860725

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档