本文主要是介绍bzoj4182 Shopping 购物 点分治+树形多重背包+dfs序+单调队列优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:传送门(权限题)
大毒瘤QAQ
发现买过物品的商店构成一个联通块,所以钦定一个根,让所有买过物品的商店到根的路径上的商店都是买过物品的商店。
然后在上面跑树形背包,子状态设计:
d p [ i ] [ j ] dp[i][j] dp[i][j]表示选到 i i i号节点,已经花了 j j j块钱,所能达到的最大喜爱度。
用dfs实现的树形dp会TLE,考虑用dfs序来优化:
按照dfs序优化的套路,分不选当前节点和选当前节点两种情况。
倒序枚举dfs序,
当不选当前节点时,说明整棵子树都不能选,这个时候就从不属于这棵子树的dfs序最小的节点推过来。
用这个图来说明:
如果选当前节点,假设当前节点的dfs序为 i i i,就从dfs序为 i + 1 i+1 i+1的节点推到这个节点。
这里dfs序为 i + 1 i+1 i+1的节点和dfs序为i的节点在同一个联通块中qwq,因此正确性珂以保证。
用这张图来说明:
用dfs序优化完,发现时间复杂度仍然不对,只是优化了常数。
据毒瘤czh所说多重背包珂以单调队列优化。
考虑这样一个经典的多重背包方程( w [ i ] w[i] w[i]表示物品重量, v [ i ] v[i] v[i]表示物品价值):
d p [ j ] = m i n ( d p [ j − w [ i ] ∗ k ] + v [ i ] ∗ k ) dp[j]=min(dp[j-w[i]*k]+v[i]*k) dp[j]=min(dp[j−w[i]∗k]+v[i]∗k)
令 a = j / w [ i ] , b = j a=j/w[i], b=j a=j/w[i],b=j% w [ i ] w[i] w[i],则方程珂以写成(边界条件略去):
d p [ j ] = m i n ( d p [ k ∗ w [ i ] + b ] + v [ i ] ∗ ( a − k ) ) dp[j]=min(dp[k*w[i]+b]+v[i]*(a-k)) dp[j]=min(dp[k∗w[i]+b]+v[i]∗(a−k))
分离变量和不变量,珂以得到:
d p [ j ] = m i n ( d p [ a ∗ k + b ] − v [ i ] ∗ k ) + v [ i ] ∗ a dp[j]=min(dp[a*k+b]-v[i]*k)+v[i]*a dp[j]=min(dp[a∗k+b]−v[i]∗k)+v[i]∗a
对于 m i n min min里面的部分,维护一个单调队列,这样每次就珂以 O ( 1 ) O(1) O(1)推出。
注:这样每次需要枚举 m o d mod mod w [ i ] w[i] w[i]的余数和商,看起来多了一重循环,但是不难发现余数与商所组成的数与直接枚举是一一对应的,所以不会影响复杂度。而单调队列则免去了决策点的寻找,所以总体优化掉了一个 O ( n ) O(n) O(n)。
但是这样时间复杂度仍然是 O ( n 2 m ) O(n^2m) O(n2m),还是过不了qwq。
思考这道题的本质,因为所有选出的点都是一个联通块,所以不可能根不选,选出的其他点分布在两个子树中qwq。
所以每次找树的重心,跑点分治,每次能把规模降到原来的一半,因此最终时间复杂度 O ( n m l o g n ) O(nmlogn) O(nmlogn)。
代码
//yu xing chen xiao mei mei
//#pragma GCC optimize (3)
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<math.h>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {re x=0,f=1;char ch=getchar();while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}while(ch>='0' && ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;
}
inline void write(int x) {if(x>9) write(x/10);putchar(x%10+'0');
}
const int Size=505;
const int Maxn=4005;
namespace I_Love {int n,m,cnt,w[Size],c[Size],d[Size],head[Size];
struct Edge {int u,v,next;
} G[Size<<1];
void AddEdge(int u,int v) {G[++cnt].u=u;G[cnt].v=v;G[cnt].next=head[u];head[u]=cnt;
}
int ans,sum,root,maxp[Size],siz[Size];
bool vis[Size];
void getrt(int x,int fa) {//找树的重心 siz[x]=1;maxp[x]=0;for(int i=head[x]; i; i=G[i].next) {int nxt=G[i].v;if(!vis[nxt] && nxt!=fa) {getrt(nxt,x);siz[x]+=siz[nxt];if(siz[nxt]>maxp[x]) {maxp[x]=siz[nxt];}}}maxp[x]=max(maxp[x],sum-siz[x]);if(maxp[x]<maxp[root]) root=x;
}
int tim,dfn[Size];
void dfs(int x,int fa) {//求出dfs序和每个节点的子树大小 dfn[++tim]=x;siz[x]=1;for(int i=head[x]; i; i=G[i].next) {int nxt=G[i].v;if(!vis[nxt] && nxt!=fa) {dfs(nxt,x);siz[x]+=siz[nxt];}}
}
int dp[Size][Maxn],Queue[Maxn];
#define calc(pos) dp[i+1][j+Queue[pos]*c[x]]+(k-Queue[pos])*w[x]
void solve(int x) {vis[x]=true;tim=0;dfs(x,0);memset(dp[tim+1],0,sizeof(dp[tim+1]));for(re i=tim; i; i--) {int x=dfn[i];//不选的情况 for(re j=0; j<=m; j++) {dp[i][j]=dp[i+siz[x]][j];}//选的情况 for(re j=0; j<c[x]; j++) { //枚举余数 int hd=1,tl=0;for(re k=0; k*c[x]+j<=m; k++) { //枚举商 while(hd<=tl && Queue[hd]<k-d[x]) hd++;if(hd<=tl) dp[i][j+k*c[x]]=max(dp[i][j+k*c[x]],calc(hd));while(hd<=tl && dp[i+1][j+k*c[x]]>=calc(tl)) tl--;Queue[++tl]=k;}}}//把所有经过根的情况取最大值 for(re i=1; i<=m; i++) {if(dp[1][i]>ans) {ans=dp[1][i];}}for(int i=head[x]; i; i=G[i].next) {int nxt=G[i].v;if(!vis[nxt]) {root=0;sum=siz[nxt];getrt(nxt,x);solve(root);}}
}
inline void clear() {tim=ans=root=cnt=0;memset(head,0,sizeof(head));memset(vis,0,sizeof(vis));maxp[0]=1e9;
}
void Kutori() {
// freopen("1.in","r",stdin);int T=read();while(T--) {clear();n=read();m=read();for(re i=1; i<=n; i++) w[i]=read();for(re i=1; i<=n; i++) c[i]=read();for(re i=1; i<=n; i++) d[i]=read();for(re i=1; i<n; i++) {int u=read();int v=read();AddEdge(u,v);AddEdge(v,u);}dfs(1,0);sum=n;getrt(1,0);solve(root);write(ans);putchar(10);}
}}
int main() {I_Love::Kutori();return 0;
}
这篇关于bzoj4182 Shopping 购物 点分治+树形多重背包+dfs序+单调队列优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!