Logistic回归代价函数的数学推导及实现

2024-03-30 00:18

本文主要是介绍Logistic回归代价函数的数学推导及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

logistic回归的代价函数形式如下:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right] J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

可是这又是怎么来的呢? 答:最大似然估计计算出来的

1.最大似然估计

我们先来简单的回顾一下最大似然估计(Maximum likelihood estimation),详细戳此处,见参数估计

所谓参数估计就是:对未知参数 θ \theta θ进行估计时,在参数可能的取值范围内选取,使“样本获得此观测值 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的概率最大的参数 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计,这样选定的 θ ^ \hat{\theta} θ^有利于 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的出现。也就是说在已知数据集(结果)和模型(分布函数)的情况下,估计出最适合该模型的参数。

举个例子:

假设你有一枚硬币,随机抛10次;现在的结果是6次正面。我们都知道,抛一枚硬币,正面朝上和反面朝上的概率均是θ=0.5;但前提时,这是在大量的实验(抛硬币)情况下才有的结论。那在我们这个情况下,参数θ到底取何值时才能使得出现6次正面的肯能性最大呢?

我们知道,抛硬币是符合二项分布B(n,p),也就是说我们现在已知样本结果以及函数分布,估计出使得该结果最大可能出现的参数 θ ^ \hat{\theta} θ^。则有:
L = P ( X = 6 ) = C 10 6 θ ^ 6 ( 1 − θ ^ ) 4 \mathrm{L}=P(X=6)=\mathrm{C_{10}^6}\hat{\theta}^6(1-\hat{\theta})^4 L=P(X=6)=C106θ^6(1θ^)4

而我们接下来要做的就是求当 L \mathrm{L} L取最大值时, θ ^ \hat{\theta} θ^的值。我们很容易求得当 θ ^ = 0.6 \hat{\theta}=0.6 θ^=0.6 L \mathrm{L} L取得最大值0.25;而当 θ ^ = 0.5 \hat{\theta}=0.5 θ^=0.5时, L = 0.21 \mathrm{L}=0.21 L=0.21

再假设你有一枚硬币,随机抛10次;现在的结果是7次正面。则此时使得该结果最大可能性出现参数 θ ^ \hat{\theta} θ^又是多少呢?按照上面的方法我们很容易求得当 θ ^ = 0.7 \hat{\theta}=0.7 θ^=0.7时可能性最大。

再举个例子:

明显,在Logistic回归中,所有样本点也服从二项分布;设有 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个样本点,其类标为 1 , 1 , 0 1,1,0 1,1,0;同时设样本点为1的概率为 P = h θ ( x ) P=h_{\theta}(x) P=hθ(x),那么当 P P P等于多少时,其结果才最可能出现 1 , 1 , 0 1,1,0 1,1,0呢?于是问题就变成最大化:
P ∗ P ( 1 − P ) = h θ ( x 1 ) ∗ h θ ( x 2 ) ∗ ( 1 − h θ ( x 3 ) ) P*P(1-P)=h_{\theta}(x_1)*h_{\theta}(x_2)*(1-h_{\theta}(x_3)) PP(1P)=hθ(x1)hθ(x2)(1hθ(x

这篇关于Logistic回归代价函数的数学推导及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860036

相关文章

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

mysql数据库重置表主键id的实现

《mysql数据库重置表主键id的实现》在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,本文主要介绍了mysql数据库重置表主键id的实现,具有一定的参考价值,感兴趣的可以了... 目录关键语法演示案例在我们的开发过程中,难免在做测试的时候会生成一些杂乱无章的SQL主键数据,当我们

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.