Logistic回归代价函数的数学推导及实现

2024-03-30 00:18

本文主要是介绍Logistic回归代价函数的数学推导及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

logistic回归的代价函数形式如下:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right] J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

可是这又是怎么来的呢? 答:最大似然估计计算出来的

1.最大似然估计

我们先来简单的回顾一下最大似然估计(Maximum likelihood estimation),详细戳此处,见参数估计

所谓参数估计就是:对未知参数 θ \theta θ进行估计时,在参数可能的取值范围内选取,使“样本获得此观测值 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的概率最大的参数 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计,这样选定的 θ ^ \hat{\theta} θ^有利于 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的出现。也就是说在已知数据集(结果)和模型(分布函数)的情况下,估计出最适合该模型的参数。

举个例子:

假设你有一枚硬币,随机抛10次;现在的结果是6次正面。我们都知道,抛一枚硬币,正面朝上和反面朝上的概率均是θ=0.5;但前提时,这是在大量的实验(抛硬币)情况下才有的结论。那在我们这个情况下,参数θ到底取何值时才能使得出现6次正面的肯能性最大呢?

我们知道,抛硬币是符合二项分布B(n,p),也就是说我们现在已知样本结果以及函数分布,估计出使得该结果最大可能出现的参数 θ ^ \hat{\theta} θ^。则有:
L = P ( X = 6 ) = C 10 6 θ ^ 6 ( 1 − θ ^ ) 4 \mathrm{L}=P(X=6)=\mathrm{C_{10}^6}\hat{\theta}^6(1-\hat{\theta})^4 L=P(X=6)=C106θ^6(1θ^)4

而我们接下来要做的就是求当 L \mathrm{L} L取最大值时, θ ^ \hat{\theta} θ^的值。我们很容易求得当 θ ^ = 0.6 \hat{\theta}=0.6 θ^=0.6 L \mathrm{L} L取得最大值0.25;而当 θ ^ = 0.5 \hat{\theta}=0.5 θ^=0.5时, L = 0.21 \mathrm{L}=0.21 L=0.21

再假设你有一枚硬币,随机抛10次;现在的结果是7次正面。则此时使得该结果最大可能性出现参数 θ ^ \hat{\theta} θ^又是多少呢?按照上面的方法我们很容易求得当 θ ^ = 0.7 \hat{\theta}=0.7 θ^=0.7时可能性最大。

再举个例子:

明显,在Logistic回归中,所有样本点也服从二项分布;设有 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个样本点,其类标为 1 , 1 , 0 1,1,0 1,1,0;同时设样本点为1的概率为 P = h θ ( x ) P=h_{\theta}(x) P=hθ(x),那么当 P P P等于多少时,其结果才最可能出现 1 , 1 , 0 1,1,0 1,1,0呢?于是问题就变成最大化:
P ∗ P ( 1 − P ) = h θ ( x 1 ) ∗ h θ ( x 2 ) ∗ ( 1 − h θ ( x 3 ) ) P*P(1-P)=h_{\theta}(x_1)*h_{\theta}(x_2)*(1-h_{\theta}(x_3)) PP(1P)=hθ(x1)hθ(x2)(1hθ(x

这篇关于Logistic回归代价函数的数学推导及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860036

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义