本文主要是介绍Logistic回归代价函数的数学推导及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
logistic回归的代价函数形式如下:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right] J(θ)=−m1[i=1∑my(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]
可是这又是怎么来的呢? 答:最大似然估计计算出来的
1.最大似然估计
我们先来简单的回顾一下最大似然估计(Maximum likelihood estimation),详细戳此处,见参数估计
所谓参数估计就是:对未知参数 θ \theta θ进行估计时,在参数可能的取值范围内选取,使“样本获得此观测值 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的概率最大的参数 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计,这样选定的 θ ^ \hat{\theta} θ^有利于 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的出现。也就是说在已知数据集(结果)和模型(分布函数)的情况下,估计出最适合该模型的参数。
举个例子:
假设你有一枚硬币,随机抛10次;现在的结果是6次正面。我们都知道,抛一枚硬币,正面朝上和反面朝上的概率均是θ=0.5;但前提时,这是在大量的实验(抛硬币)情况下才有的结论。那在我们这个情况下,参数θ到底取何值时才能使得出现6次正面的肯能性最大呢?
我们知道,抛硬币是符合二项分布B(n,p),也就是说我们现在已知样本结果以及函数分布,估计出使得该结果最大可能出现的参数 θ ^ \hat{\theta} θ^。则有:
L = P ( X = 6 ) = C 10 6 θ ^ 6 ( 1 − θ ^ ) 4 \mathrm{L}=P(X=6)=\mathrm{C_{10}^6}\hat{\theta}^6(1-\hat{\theta})^4 L=P(X=6)=C106θ^6(1−θ^)4
而我们接下来要做的就是求当 L \mathrm{L} L取最大值时, θ ^ \hat{\theta} θ^的值。我们很容易求得当 θ ^ = 0.6 \hat{\theta}=0.6 θ^=0.6时 L \mathrm{L} L取得最大值0.25;而当 θ ^ = 0.5 \hat{\theta}=0.5 θ^=0.5时, L = 0.21 \mathrm{L}=0.21 L=0.21
再假设你有一枚硬币,随机抛10次;现在的结果是7次正面。则此时使得该结果最大可能性出现参数 θ ^ \hat{\theta} θ^又是多少呢?按照上面的方法我们很容易求得当 θ ^ = 0.7 \hat{\theta}=0.7 θ^=0.7时可能性最大。
再举个例子:
明显,在Logistic回归中,所有样本点也服从二项分布;设有 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个样本点,其类标为 1 , 1 , 0 1,1,0 1,1,0;同时设样本点为1的概率为 P = h θ ( x ) P=h_{\theta}(x) P=hθ(x),那么当 P P P等于多少时,其结果才最可能出现 1 , 1 , 0 1,1,0 1,1,0呢?于是问题就变成最大化:
P ∗ P ( 1 − P ) = h θ ( x 1 ) ∗ h θ ( x 2 ) ∗ ( 1 − h θ ( x 3 ) ) P*P(1-P)=h_{\theta}(x_1)*h_{\theta}(x_2)*(1-h_{\theta}(x_3)) P∗P(1−P)=hθ(x1)∗hθ(x2)∗(1−hθ(x
这篇关于Logistic回归代价函数的数学推导及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!