线性代数实验(二)线性方程组,特征值与特征向量

2024-03-29 22:58

本文主要是介绍线性代数实验(二)线性方程组,特征值与特征向量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、线性方程组
Matlab求解线性方程组的命令格式
rank(A):求矩阵A的秩;
rref(A):求矩阵A的行最简形;
null(A):求系数矩阵为A的齐次方程组的基础解系;
Null(A,’r’):求系数矩阵为A的齐次方程组有理数形式的基础解系;
XA=B: x=B/A, 求矩阵方程唯一解或最小范数解;
三、特征值与特征向量
Matlab命令格式:
trace(A):返回矩阵A的迹.
poly(A):返回矩阵A的特征多项式系数.
[v,d]=eig(A):返回矩阵A的特征向量矩阵v和特征值对角阵d.
B=orth(A):返回矩阵A的列向量正交化的矩阵.

这篇关于线性代数实验(二)线性方程组,特征值与特征向量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/859874

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

HNU-2023电路与电子学-实验3

写在前面: 一、实验目的 1.了解简易模型机的内部结构和工作原理。 2.分析模型机的功能,设计 8 重 3-1 多路复用器。 3.分析模型机的功能,设计 8 重 2-1 多路复用器。 4.分析模型机的工作原理,设计模型机控制信号产生逻辑。 二、实验内容 1.用 VERILOG 语言设计模型机的 8 重 3-1 多路复用器; 2.用 VERILOG 语言设计模型机的 8 重 2-1 多

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

61.以太网数据回环实验(4)以太网数据收发器发送模块

(1)状态转移图: (2)IP数据包格式: (3)UDP数据包格式: (4)以太网发送模块代码: module udp_tx(input wire gmii_txc ,input wire reset_n ,input wire tx_start_en , //以太网开始发送信

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

LTspice模拟CCM和DCM模式的BUCK电路实验及参数计算

关于BUCK电路的原理可以参考硬件工程师炼成之路写的《 手撕Buck!Buck公式推导过程》.实验内容是将12V~5V的Buck电路仿真,要求纹波电压小于15mv. CCM和DCM的区别: CCM:在一个开关周期内,电感电流从不会到0. DCM:在开关周期内,电感电流总会到0. CCM模式Buck电路仿真: 在用LTspice模拟CCM电路时,MOS管驱动信号频率为100Khz,负载为10R(可自