免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究

2024-03-29 02:12

本文主要是介绍免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

2 部分代码

3 程序结果

4 下载链接


主要内容

该程序对应文章《Contract Design for Energy Demand Response》,电力系统需求响应(DR)用来调节用户对电能的需求,即在预测的需求高于电能供应时,希望通过需求响应减少用户用电,从而满足系统平衡。程序实现新的需求响应模型DR-VCG,该模型提供了灵活的用户参与DR过程合同,并且通过投标活动保证收益分配和价格计算的合理性。通过实例证实该方法的有效性,可靠性显著提升,总费用明显降低。该程序采用python编写。

部分代码

import grid
import agent
import contract
import matplotlib.pyplot as plt
import time
import statistics
import pandas as pd
from datetime import datetime
​
​
​
def main():for i in range(1):M = 1000number_of_agents = 200number_of_simulation_per_lanbda = 100generator_price_multiply = 1gamma = [1.0,1.166,1.333,1.5,1.666,1.833,2]df_columns = ['actuel expanse','gamma','M','actuel kWh reduced','Met the demand']row_data_df = pd.DataFrame(columns=df_columns)
​Fixed_cont_avg_cost = []Fixed_cont_avg_reliability = []Fixed_single_cont_avg_cost = []Fixed_single_cont_avg_reliability = []T_F_List_Fixed_cont_Met_the_demand = []Fixed_cont_Total_expense = []gamma_used = []for lb in gamma:Fixed_cont_reduce_list = []for i in range(number_of_simulation_per_lanbda):start = time.time()print('iteration:',i)Grid = grid.grid(M,lb)Grid.introduce_self()Agents = []
​for num in range(number_of_agents):ag = agent.agent(num)Agents.append(ag)
​
​Contracts = []for i in range(10, M+1, 10):Contracts.append(contract.contract(i,0.3,0.5))
​
​single_contract = []single_contract.append(contract.contract(50,0.3,0.5))
​Grid.set_single_contract(single_contract)Grid.set_contract(Contracts)Grid.set_agents(Agents)Grid.send_contrects_to_agents()Grid.send_single_contrects_to_agents()
​
​for ag in Agents:ag.Fixed_cont_bid_on_contract()
​
​for ag in Agents:ag.Fixed_single_cont_bid_on_contract()
​Grid.Fixed_cont_get_bids_from_agent()Grid.Fixed_cont_generator_bids(price_multiply=generator_price_multiply)Grid.Fixed_cont_get_q_from_agent()Fixed_cont_sum_of_bids = Grid.knapsack(bids_type='Fixed_cont')Grid.Fixed_cont_pay_to_agents(Fixed_cont_sum_of_bids)Grid.Fixed_cont_reliability()Grid.Fixed_single_cont_get_bids_from_agent()Grid.Fixed_single_cont_get_q_from_agent()
​
​Fixed_cont_Total_expense.append(Grid.Fixed_cont_Total_expense_sum)Fixed_cont_reduce_list.append(Grid.Fixed_cont_reliability_sum_q)if Grid.Fixed_cont_reliability_sum_q >= Grid.M:met_the_demand = 1else:met_the_demand = 0T_F_List_Fixed_cont_Met_the_demand.append(met_the_demand)print('Fixed_cont- Met_the_demand: ', T_F_List_Fixed_cont_Met_the_demand)print('Fixed_cont- Total_expense: ', Fixed_cont_Total_expense)gamma_used.append(lb)
​
​row_data_df = row_data_df.append(pd.DataFrame({'actuel expanse':[Grid.Fixed_cont_Total_expense_sum],'gamma':[lb],'M': [M],'actuel kWh reduced': [Grid.Fixed_cont_reliability_sum_q],'Met the demand': [met_the_demand]}))end = time.time()print('iteration took:', (end - start), 'sec')print('-'*200)Fixed_cont_avg_cost.append(statistics.mean(Fixed_cont_Total_expense))if len(T_F_List_Fixed_cont_Met_the_demand) > 0:Fixed_cont_avg_reliability.append(T_F_List_Fixed_cont_Met_the_demand.count(True) / len(T_F_List_Fixed_cont_Met_the_demand))else:Fixed_cont_avg_reliability.append(0.0)
​filename = datetime.now().strftime('data/energy_demamd_row_data-%Y-%m-%d-%H-%M-%S.csv')row_data_df.to_csv(filename,index=False)graph_it(Fixed_cont_avg_reliability,Fixed_single_cont_avg_reliability, Fixed_cont_avg_cost,Fixed_single_cont_avg_cost)
​
def graph_it(Fixed_cont_avg_reliability =[],Fixed_single_cont_avg_reliability=[],Fixed_cont_avg_cost=[],Fixed_single_cont_avg_cost=[]):plt.rcParams["figure.figsize"] = (8, 8)fig, ax = plt.subplots()
​ax.plot(Fixed_cont_avg_reliability, Fixed_cont_avg_cost, color='blue',marker='o',label="fixed multiple cont")ax.plot(Fixed_single_cont_avg_reliability, Fixed_single_cont_avg_cost, color='black',marker='o', label="fixed single cont")ax.set(xlabel="Total_Reliability", ylabel="expenses ($)", title="(a)n= 400")fig.savefig("test.png")
​
​
​
if __name__ == "__main__":main()plt.show()

程序结果

原文结果图:

4 下载链接

这篇关于免费|Python|【需求响应】一种新的需求响应机制DR-VCG研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857322

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核