卷积变体-----分组卷积、深度可分离卷积、膨胀卷积

2024-03-28 05:20

本文主要是介绍卷积变体-----分组卷积、深度可分离卷积、膨胀卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、分组卷积
    • 1.1 概述
    • 1.2 参数量变换
  • 二、深度可分离卷积
    • 2.1 概述
    • 2.2 计算
  • 三、膨胀卷积


一、分组卷积

1.1 概述

 1. 分组卷积(Group convolution )最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此把特征图分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。

 2. 一般的卷积会对输入数据的整体一起做卷积操作。而组卷积则是在深度上进行划分,即某几个通道编为一组,对输入数据做组合卷积操作。

在这里插入图片描述

1.2 参数量变换

 1. 标准的 2 D 2D 2D 卷积步骤如下图所示:输入特征为: H × W × C H × W × C H×W×C,然后应用 C ′ C' C 个卷积核组(每个卷积核组的大小为 h × w × c h × w × c h×w×c),输入层被转换为大小为 H ′ × W ′ × C ′ H' × W' × C' H×W×C 的输出特征。

在这里插入图片描述

 2. 分组卷积的表示如下图所示。我们计算一下标准 2 D 2D 2D 卷积 和分组卷积的参数量:
 标准 2 D 2D 2D 卷积: w × h × C × C ′ w × h × C × C' w×h×C×C
 分组卷积: w × h × C / 2 × C ′ / 2 × 2 w × h × C/2 × C'/2 × 2 w×h×C/2×C/2×2
 我们可以发现参数量减少到原来的 1 / 2 1/2 1/2,那当Group为4的时候,参数量将会减少到原来的 1 / 4 1/4 1/4

在这里插入图片描述

二、深度可分离卷积

2.1 概述

 1. 在深度可分离卷积(depthwise separable convolution)中,通常将卷积操作拆分成多个步骤。深度可分离卷积把普通卷积拆分成 D W DW DW 卷积(Depthwise Convolution,深度卷积)和 P W PW PW 卷积(Point Convolution,点卷积)两部分。:深度可分离卷积 = 深度卷积 + 点卷积。

在这里插入图片描述

 2. 深度卷积完成后的特征图数量与输入层的通道数相同。但这种运算对输入层的每个通道独立进行卷积运算,没有有效地利用不同通道在相同空间位置上的特征信息。因此需要点卷积来将这些特征图进行组合生成新的特征图。

 3. 举例:
 (1) 在第一部分深度卷积中,我们在不改变深度的情况下,对输入图像进行了分组卷积。我们使用 3 3 3 5 × 5 × 1 5×5×1 5×5×1 形状的卷积核。每个 5 × 5 × 1 5×5×1 5×5×1 卷积核迭代图像的 1 1 1 个通道(注意: 1 1 1 个通道,而不是所有通道),得到 3 3 3 8 × 8 × 1 8×8×1 8×8×1 的图像。将这些图像叠加在一起可创建 8 × 8 × 3 8×8×3 8×8×3 的图像。

在这里插入图片描述

 (2) 点卷积的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1 × 1 × M 1×1×M 1×1×M M M M 为上一层的通道数。所以这里的卷积运算会将上一步的图像在深度方向上进行加权组合,生成新的特征图。有几个卷积核就有几个输出图像。
 点向卷积之所以如此命名是因为它使用了一个 1 × 1 1×1 1×1 卷积核,我们通过 1 × 1 × 3 1×1×3 1×1×3 卷积核迭代 8 × 8 × 3 8×8×3 8×8×3 图像,得到 8 × 8 × 1 8×8×1 8×8×1 图像。我们可以创建 256 256 256 1 × 1 × 3 1×1×3 1×1×3 卷积核,每个卷积核输出一个 8 × 8 × 1 8×8×1 8×8×1 图像,全部叠加到一起得到形状为 8 × 8 × 256 8×8×256 8×8×256 的最终图像。
在这里插入图片描述

在这里插入图片描述

2.2 计算

 用上面这个例子:
 普通卷积参数量为: 3 × 256 × 5 × 5 3×256×5×5 3×256×5×5
 深度可分离卷积参数量为: 3 × 5 × 5 + 3 × 256 × 1 × 1 3×5×5+3×256×1×1 3×5×5+3×256×1×1

三、膨胀卷积

 1. 膨胀卷积与普通的卷积相比,除了卷积核的大小以外,还有一个膨胀率(dilation rate)参数,主要用来表示膨胀的大小。卷积核的膨胀率(dilate rate)属性定义为卷积核的元素间距。如 dilate rate=2 是每隔一个像素位置应用一个卷积元素,dilate rate=1 就是普通的卷积。具体含义就是在卷积核中填充 dilation rate 个 0。

 2. (a) 是普通卷积,1-dilated convolution,卷积核的感受野为 3 × 3 = 9 3×3=9 3×3=9; (b) 是膨胀卷积,2-dilated convolution,卷积核的感受野为 5 × 5 = 25 5×5=25 5×5=25;(c) 是膨胀卷积,4-dilated convolution,卷积核的感受野为 9 × 9 = 81 9×9=81 9×9=81

在这里插入图片描述

 3. 卷积核经过膨胀后实际参与运算的卷积大小计算公式:膨胀后的卷积核尺寸 = 膨胀系数 × × × (原始卷积核尺寸 − 1 -1 1 + 1 +1 +1

这篇关于卷积变体-----分组卷积、深度可分离卷积、膨胀卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854560

相关文章

springboot将lib和jar分离的操作方法

《springboot将lib和jar分离的操作方法》本文介绍了如何通过优化pom.xml配置来减小SpringBoot项目的jar包大小,主要通过使用spring-boot-maven-plugin... 遇到一个问题,就是每次maven package或者maven install后target中的ja

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo