卷积变体-----分组卷积、深度可分离卷积、膨胀卷积

2024-03-28 05:20

本文主要是介绍卷积变体-----分组卷积、深度可分离卷积、膨胀卷积,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、分组卷积
    • 1.1 概述
    • 1.2 参数量变换
  • 二、深度可分离卷积
    • 2.1 概述
    • 2.2 计算
  • 三、膨胀卷积


一、分组卷积

1.1 概述

 1. 分组卷积(Group convolution )最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此把特征图分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。

 2. 一般的卷积会对输入数据的整体一起做卷积操作。而组卷积则是在深度上进行划分,即某几个通道编为一组,对输入数据做组合卷积操作。

在这里插入图片描述

1.2 参数量变换

 1. 标准的 2 D 2D 2D 卷积步骤如下图所示:输入特征为: H × W × C H × W × C H×W×C,然后应用 C ′ C' C 个卷积核组(每个卷积核组的大小为 h × w × c h × w × c h×w×c),输入层被转换为大小为 H ′ × W ′ × C ′ H' × W' × C' H×W×C 的输出特征。

在这里插入图片描述

 2. 分组卷积的表示如下图所示。我们计算一下标准 2 D 2D 2D 卷积 和分组卷积的参数量:
 标准 2 D 2D 2D 卷积: w × h × C × C ′ w × h × C × C' w×h×C×C
 分组卷积: w × h × C / 2 × C ′ / 2 × 2 w × h × C/2 × C'/2 × 2 w×h×C/2×C/2×2
 我们可以发现参数量减少到原来的 1 / 2 1/2 1/2,那当Group为4的时候,参数量将会减少到原来的 1 / 4 1/4 1/4

在这里插入图片描述

二、深度可分离卷积

2.1 概述

 1. 在深度可分离卷积(depthwise separable convolution)中,通常将卷积操作拆分成多个步骤。深度可分离卷积把普通卷积拆分成 D W DW DW 卷积(Depthwise Convolution,深度卷积)和 P W PW PW 卷积(Point Convolution,点卷积)两部分。:深度可分离卷积 = 深度卷积 + 点卷积。

在这里插入图片描述

 2. 深度卷积完成后的特征图数量与输入层的通道数相同。但这种运算对输入层的每个通道独立进行卷积运算,没有有效地利用不同通道在相同空间位置上的特征信息。因此需要点卷积来将这些特征图进行组合生成新的特征图。

 3. 举例:
 (1) 在第一部分深度卷积中,我们在不改变深度的情况下,对输入图像进行了分组卷积。我们使用 3 3 3 5 × 5 × 1 5×5×1 5×5×1 形状的卷积核。每个 5 × 5 × 1 5×5×1 5×5×1 卷积核迭代图像的 1 1 1 个通道(注意: 1 1 1 个通道,而不是所有通道),得到 3 3 3 8 × 8 × 1 8×8×1 8×8×1 的图像。将这些图像叠加在一起可创建 8 × 8 × 3 8×8×3 8×8×3 的图像。

在这里插入图片描述

 (2) 点卷积的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1 × 1 × M 1×1×M 1×1×M M M M 为上一层的通道数。所以这里的卷积运算会将上一步的图像在深度方向上进行加权组合,生成新的特征图。有几个卷积核就有几个输出图像。
 点向卷积之所以如此命名是因为它使用了一个 1 × 1 1×1 1×1 卷积核,我们通过 1 × 1 × 3 1×1×3 1×1×3 卷积核迭代 8 × 8 × 3 8×8×3 8×8×3 图像,得到 8 × 8 × 1 8×8×1 8×8×1 图像。我们可以创建 256 256 256 1 × 1 × 3 1×1×3 1×1×3 卷积核,每个卷积核输出一个 8 × 8 × 1 8×8×1 8×8×1 图像,全部叠加到一起得到形状为 8 × 8 × 256 8×8×256 8×8×256 的最终图像。
在这里插入图片描述

在这里插入图片描述

2.2 计算

 用上面这个例子:
 普通卷积参数量为: 3 × 256 × 5 × 5 3×256×5×5 3×256×5×5
 深度可分离卷积参数量为: 3 × 5 × 5 + 3 × 256 × 1 × 1 3×5×5+3×256×1×1 3×5×5+3×256×1×1

三、膨胀卷积

 1. 膨胀卷积与普通的卷积相比,除了卷积核的大小以外,还有一个膨胀率(dilation rate)参数,主要用来表示膨胀的大小。卷积核的膨胀率(dilate rate)属性定义为卷积核的元素间距。如 dilate rate=2 是每隔一个像素位置应用一个卷积元素,dilate rate=1 就是普通的卷积。具体含义就是在卷积核中填充 dilation rate 个 0。

 2. (a) 是普通卷积,1-dilated convolution,卷积核的感受野为 3 × 3 = 9 3×3=9 3×3=9; (b) 是膨胀卷积,2-dilated convolution,卷积核的感受野为 5 × 5 = 25 5×5=25 5×5=25;(c) 是膨胀卷积,4-dilated convolution,卷积核的感受野为 9 × 9 = 81 9×9=81 9×9=81

在这里插入图片描述

 3. 卷积核经过膨胀后实际参与运算的卷积大小计算公式:膨胀后的卷积核尺寸 = 膨胀系数 × × × (原始卷积核尺寸 − 1 -1 1 + 1 +1 +1

这篇关于卷积变体-----分组卷积、深度可分离卷积、膨胀卷积的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/854560

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

MySQL主从复制与读写分离的用法解读

《MySQL主从复制与读写分离的用法解读》:本文主要介绍MySQL主从复制与读写分离的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、主从复制mysql主从复制原理实验案例二、读写分离实验案例安装并配置mycat 软件设置mycat读写分离验证mycat读

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷