基于XGBoost和数据预处理的电动汽车车型预测

2024-03-27 13:36

本文主要是介绍基于XGBoost和数据预处理的电动汽车车型预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

基于XGBoost和数据预处理的电动汽车车型预测

文章目录

  • 基于XGBoost和数据预处理的电动汽车车型预测
  • 1、前言
  • 2、导入数据
  • 3、各县电动汽车采用情况条形图
  • 4、电动车类型饼图
  • 5、前5最欢迎的电动车制造商
  • 6、XGBoost模型
    • 6.1 字符串列的标识
    • 6.2 删除不相关的列
    • 6.3 编码分类变量
    • 6.4 电动车类型热编码
    • 6.5 将数据划分训练集和测试集
    • 6.6 为训练集和测试集创建DMatrix
    • 6.7 XGBoot模型
    • 6.8 预测和计算准确值

作者:i阿极

作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪


大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持

专栏案例:机器学习案例
机器学习(一):线性回归之最小二乘法
机器学习(二):线性回归之梯度下降法
机器学习(三):基于线性回归对波士顿房价预测
机器学习(四):基于KNN算法对鸢尾花类别进行分类预测
机器学习(五):基于KNN模型对高炉发电量进行回归预测分析
机器学习(六):基于高斯贝叶斯对面部皮肤进行预测分析
机器学习(七):基于多项式贝叶斯对蘑菇毒性分类预测分析
机器学习(八):基于PCA对人脸识别数据降维并建立KNN模型检验
机器学习(十四):基于逻辑回归对超市销售活动预测分析
机器学习(十五):基于神经网络对用户评论情感分析预测
机器学习(十六):线性回归分析女性身高与体重之间的关系
机器学习(十七):基于支持向量机(SVM)进行人脸识别预测
机器学习(十八):基于逻辑回归对优惠券使用情况预测分析
机器学习(十九):基于逻辑回归对某银行客户违约预测分析
机器学习(二十):LightGBM算法原理(附案例实战)
机器学习(二十一):基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
机器学习(二十二):基于逻辑回归(Logistic Regression)对股票客户流失预测分析


1、前言

这组代码片段对通过华盛顿州许可部注册的纯电动汽车(BEV)和插电式混合动力汽车(PHEV)的数据集进行了各种分析。这些代码产生了一些见解,如按城市划分的电动续航里程统计数据、CAFV资格计数、电动汽车制造商的受欢迎程度、续航里程统计(最大、最小、平均)、电动汽车类型分布、按车型年份划分的采用趋势以及按县划分的采用情况。结果保存在CSV文件中,并通过条形图、折线图和饼图进行可视化。这些分析为华盛顿州的电动汽车前景和采用模式提供了宝贵的见解。

2、导入数据

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as snsdata = pd.read_csv("./us_car_data.csv")

3、各县电动汽车采用情况条形图

count_by_county = data["County"].value_counts()
plt.figure(figsize=(10, 6))
count_by_county.plot(kind='bar', color=colors)
plt.xlabel("County")
plt.ylabel("Count")
plt.title("Electric Vehicle Adoption by County")
plt.show()

此代码创建了一个条形图,显示每个县采用电动汽车的情况。每个小节代表一个县,小节的高度代表该县的电动汽车数量。x轴标记为“县”,y轴标记为为“计数”,图表标题为“各县电动汽车采用情况”。
运行结果如下:
在这里插入图片描述

4、电动车类型饼图

vehicle_types = data["Electric Vehicle Type"].value_counts()
plt.figure(figsize=(8, 8))
vehicle_types.plot(kind='pie', autopct='%1.1f%%')
plt.title("Distribution of Electric Vehicle Types")
plt.show()

此代码创建一个饼图,显示不同类型电动汽车的分布情况。饼图的每一部分都代表一种特定的车辆类型,每种类型的百分比如图所示。图表的标题是“电动汽车类型的分布”。
运行结果如下:
在这里插入图片描述

5、前5最欢迎的电动车制造商

popular_makes = data["Make"].value_counts().head(5)
plt.figure(figsize=(10, 6))
popular_makes.plot(kind='bar', color=colors)
plt.xlabel("Make")
plt.ylabel("Count")
plt.title("Popular Electric Vehicle Manufacturers")
plt.show()
#结果:
#TESLA        61650
#NISSAN       13138
#CHEVROLET    11417
#FORD          6876
#BMW           5881

此代码创建一个条形图,显示受欢迎制造商的电动汽车数量。显示图表时,x轴标记为“Make”表示制造商,y轴标记为为“Count”表示车辆数量。图表的标题是“受欢迎的电动汽车制造商”
运行结果如下:
在这里插入图片描述

6、XGBoost模型

使用XGBoost和数据预处理的电动汽车类型预测此代码使用XGBooster算法基于给定特征执行电动汽车类型的预测。该代码包括数据预处理步骤,如识别字符串列、删除不相关列、编码分类变量和一次热编码。然后,它将数据拆分为训练集和测试集,为XGBoost创建DMatrix对象,定义XGBoost模型参数,训练模型,并对测试数据进行预测。最后,它计算了模型预测的准确性。

6.1 字符串列的标识

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import accuracy_scorestring_columns = data.select_dtypes(include=['object']).columns
print("Colonnes contenant des chaînes de caractères :")
for column in string_columns:print(column)

运行结果如下:
在这里插入图片描述

6.2 删除不相关的列

columns_to_drop = ['County', 'Electric Utility']
data = data.drop(columns_to_drop, axis=1)

6.3 编码分类变量

label_encoder = LabelEncoder()
categorical_columns = ['City', 'State', 'Make', 'Model', 'Electric Vehicle Type']
for column in categorical_columns:data[column] = label_encoder.fit_transform(data[column])

6.4 电动车类型热编码

one_hot_encoded = pd.get_dummies(data['Electric Vehicle Type'], prefix='EVType')
data = pd.concat([data, one_hot_encoded], axis=1)
print(data.head())

6.5 将数据划分训练集和测试集

features = ['Model Year', 'Make', 'Model']
target = 'Electric Vehicle Type'
train_data, test_data, train_target, test_target = train_test_split(data[features], data[target], test_size=0.2, random_state=42)

6.6 为训练集和测试集创建DMatrix

此代码使用xgb为训练和测试数据创建DMatrix对象。XGBoost库中的DMatrix函数。它使用训练数据(train_data)及其相应的目标(train_target)来创建dtrain。类似地,它使用测试数据(test_data)及其目标(test_target)创建dtest。DMatrix是XGBoost用于高效训练和预测的数据结构。

dtrain = xgb.DMatrix(train_data, label=train_target)
dtest = xgb.DMatrix(test_data, label=test_target)

6.7 XGBoot模型

params = {'objective': 'multi:softmax','num_class': len(data[target].unique()), 'eta': 0.1,'max_depth': 6,'min_child_weight': 1,'gamma': 0.1,'subsample': 0.8,'colsample_bytree': 0.8,'eval_metric': 'merror'
}
model = xgb.train(params, dtrain, num_boost_round=100)

6.8 预测和计算准确值

predictions = model.predict(dtest)
predictions = [int(round(pred)) for pred in predictions]
accuracy = accuracy_score(test_target, predictions)
print("Exactitude : {:.2f}%".format(accuracy * 100))

运行结果如下:

Exactitude : 99.00%

ps:这是部分代码

📢文章下方有交流学习区!一起学习进步!💪💪💪
📢首发CSDN博客,创作不易,如果觉得文章不错,可以点赞👍收藏📁评论📒
📢你的支持和鼓励是我创作的动力❗❗❗

这篇关于基于XGBoost和数据预处理的电动汽车车型预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/852274

相关文章

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1