Verilog基础:在testbench中使用阻塞赋值和非阻塞赋值的区别

2024-03-27 03:36

本文主要是介绍Verilog基础:在testbench中使用阻塞赋值和非阻塞赋值的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

Verilog基础icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12263729.html?spm=1001.2014.3001.5482


        本文详细阐述了在一个testbench中,应该如何使用阻塞赋值与非阻塞赋值。首先说结论,建议在testbench中,对时钟信号(包括分频时钟)使用阻塞赋值,对其他同步信号使用非阻塞赋值。

        下面是一个简单的D触发器模块,本文将针对它的testbench进行讨论。

module Dff(input clk, rst_n, data_in, output reg data_out);always@(posedge clk, negedge rst_n)beginif(!rst_n)data_out <= 1'b0;elsedata_out <= data_in;end
endmodule

        在Verilog仿真时,仿真波形与真实波形是有一定差距的,这体现在同步信号的改变与时钟沿一直是对齐的,而真实情况下,数据信号在时钟沿后需要延迟一段时间才会发生改变。

        体现在上面的模块中就是数据信号data_in的改变是与时钟信号clk同步的,data_out的改变也是与时钟信号clk同步的。

        图1展示了一个简单的仿真波形,其中信号data_in和信号data_out的改变都与时钟沿同步,需要注意的是在时钟沿处,信号data_out得到的是信号data_in在时钟沿处的原值,而不是改变后的值。

图1  仿真波形

        也就是说,一个更加真实的波形可能如图2所示。

图2 真实波形

        下面给出图1所示波形的testbench。

module Dff_t;reg rst_n = 1;reg clk = 0;reg data_in = 0;wire data_out;Dff dff(.clk(clk), .rst_n(rst_n), .data_in(data_in), .data_out(data_out));//时钟产生always begin#10 clk = ~clk;end//异步复位信号initial begin#3 rst_n = 0;#3 rst_n = 1;end//同步数据输入initial begin#10 data_in <= 1;#20 data_in <= 0;#20 data_in <= 1;#20 data_in <= 0;endendmodule

        其中时钟信号和异步复位信号使用了阻塞赋值,而数据信号使用了非阻塞赋值。如果不是这样,就无法保证产生如图1所示的仿真波形,下面将分别讨论。

1、如时钟信号使用非阻塞赋值,数据信号也使用非阻塞赋值

module Dff_t;reg rst_n = 1;reg clk = 0;reg data_in = 0;wire data_out;Dff dff(.clk(clk), .rst_n(rst_n), .data_in(data_in), .data_out(data_out));//时钟产生always begin#10 clk <= ~clk;end//异步复位信号initial begin#3 rst_n = 0;#3 rst_n = 1;end//同步数据输入initial begin#10 data_in <= 1;#20 data_in <= 0;#20 data_in <= 1;#20 data_in <= 0;endendmodule

图3 错误的波形(一种可能)

        此时进行仿真,可能会出现图3所示的错误波形,信号data_out得到的是信号data_in在时钟沿处改变后的值。

       拿第一个时钟上升沿即10ns时举例,此时时钟信号clk被非阻塞赋值,同时data_in被非阻塞赋值。首先说明非阻塞赋值的过程,非阻塞赋值是分两步进行的,第一步是将赋值号<=右表达式求值,在当前仿真时间的所有赋值和非阻塞赋值右表达式求值(活跃事件)完成后,再进行第二步,即非阻塞赋值的赋值(非阻塞赋值的赋值顺序由求值顺序决定),即非阻塞赋值分为两步:求值与赋值,后文仅使用“赋值”一词代表非阻塞赋值中的赋值这个步骤,注意其与阻塞赋值的区别。

        由于initial结构和always结构是并行的,因此无法确定哪一个非阻塞赋值的右表达式求值是先进行的,但可以确定的是,信号clk的赋值和信号data_in的赋值以某种先后顺序被调度到之后(非阻塞赋值更新区)执行。当进行第二步时,clk的赋值和data_in的赋值都从非阻塞赋值更新区激活到活跃事件区执行,此时有多种执行方式:

        1、如果clk的赋值先执行(即之前clk非阻塞赋值右表达式先求值),则其又触发了@(posedge clk),接着是执行data_out非阻塞赋值右表达式求值,还是执行data_in的赋值,是不确定的,它们都是活跃事件。如果先执行data_out非阻塞赋值右表达式求值,则data_out得到的是data_in的旧值即0;如果先执行data_in的赋值,则则data_out得到的是data_in的新值即1(图3可能就是这种情况)。

        2、如果data_in的赋值先执行(即之前data_in非阻塞赋值右表达式先求值),则最后data_out得到的一定是data_in的新值即1(图3可能就是这种情况)。

2、如时钟信号使用阻塞赋值,数据信号也使用阻塞赋值

module Dff_t;reg rst_n = 1;reg clk = 0;reg data_in = 0;wire data_out;Dff dff(.clk(clk), .rst_n(rst_n), .data_in(data_in), .data_out(data_out));//时钟产生always begin#10 clk = ~clk;end//异步复位信号initial begin#3 rst_n = 0;#3 rst_n = 1;end//同步数据输入initial begin#10 data_in = 1;#20 data_in = 0;#20 data_in = 1;#20 data_in = 0;endendmodule

图4 错误的波形(一种可能)

        此时进行仿真,可能会出现图4所示的错误波形,信号data_out得到的是信号data_in在时钟沿处改变后的值。

        拿第一个时钟上升沿即10ns时举例,此时时钟信号clk被阻塞赋值,同时data_in被阻塞赋值。由于initial结构和always结构是并行的,因此无法确定哪一个阻塞赋值是先进行的,此时有多种执行方式。

        1、如果clk的阻塞赋值先进行,则其又触发了@(posedge clk),接着是执行data_out非阻塞赋值右表达式求值,还是执行data_in的阻塞赋值,是不确定的,它们都是活跃事件。如果先执data_out非阻塞赋值右表达式求值,则data_out得到的是data_in的旧值即0;如果先执行data_in的阻塞赋值,则则data_out得到的是data_in的新值即1(图4可能就是这种情况)。

        2、如果data_in的阻塞赋值先进行则最后data_out得到的一定是data_in的新值即1(图4可能就是这种情况)。

3、如时钟信号使用非阻塞赋值,数据信号使用阻塞赋值

module Dff_t;reg rst_n = 1;reg clk = 0;reg data_in = 0;wire data_out;Dff dff(.clk(clk), .rst_n(rst_n), .data_in(data_in), .data_out(data_out));//时钟产生always begin#10 clk <= ~clk;end//异步复位信号initial begin#3 rst_n = 0;#3 rst_n = 1;end//同步数据输入initial begin#10 data_in = 1;#20 data_in = 0;#20 data_in = 1;#20 data_in = 0;endendmodule

图5 错误的波形 

        此时进行仿真,一定会出现图5所示的错误波形,信号data_out得到的是信号data_in在时钟沿处改变后的值。 

        拿第一个时钟上升沿即10ns时举例,此时时钟信号clk被非阻塞赋值,同时data_in被阻塞赋值。由于initial结构和always结构是并行的,因此无法确定是非阻塞赋值的右表达式求值先进行还是阻塞赋值先进行,但是阻塞赋值一定是在非阻塞赋值的赋值前进行的(根据非阻塞赋值的定义),所以不管有多少种执行方式,此时只有一种结果。

        1、data_out得到的一定是data_in的新值即1(图5就是这种情况)。

 4、时钟信号使用阻塞赋值,数据信号使用非阻塞赋值

module Dff_t;reg rst_n = 1;reg clk = 0;reg data_in = 0;wire data_out;Dff dff(.clk(clk), .rst_n(rst_n), .data_in(data_in), .data_out(data_out));//时钟产生always begin#10 clk = ~clk;end//异步复位信号initial begin#3 rst_n = 0;#3 rst_n = 1;end//同步数据输入initial begin#10 data_in <= 1;#20 data_in <= 0;#20 data_in <= 1;#20 data_in <= 0;endendmodule

         最后分析正确的testbench,拿第一个时钟上升沿即10ns时举例,此时时钟信号clk被阻塞赋值,同时data_in被非阻塞赋值。由于initial结构和always结构是并行的,因此无法确定是非阻塞赋值的右表达式求值先进行还是阻塞赋值先进行。

        1、如果clk的阻塞赋值先进行,则其又触发了@(posedge clk),接着是执行data_out非阻塞赋值右表达式求值,还是执行data_in非阻塞赋值右表达式求值,是不确定的,它们都是活跃事件。但是可以肯定的是,data_out得到的一定是data_in的旧值,因为非阻塞赋值的赋值一定在所有非阻塞赋值的求值后进行(根据非阻塞赋值的定义)。

        2、如果data_in非阻塞赋值右表达式求值先进行,则在之后clk阻塞赋值进行后,其又触发了@(posedge clk),接着执行data_out非阻塞赋值右表达式求值,但求值时是使用data_in的旧值,因为非阻塞赋值的赋值一定在所有非阻塞赋值的求值后进行(根据非阻塞赋值的定义)。

这篇关于Verilog基础:在testbench中使用阻塞赋值和非阻塞赋值的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850794

相关文章

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用