聚类分析|基于层次的聚类方法及其Python实现

2024-03-26 23:52

本文主要是介绍聚类分析|基于层次的聚类方法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析|基于层次的聚类方法及其Python实现

    • 0. 基于层次的聚类方法
    • 1. 簇间距离度量方法
      • 1.1 最小距离
      • 1.2 最大距离
      • 1.3 平均距离
      • 1.4 中心法
      • 1.5 离差平方和
    • 2. 基于层次的聚类算法
      • 2.1 凝聚(Agglomerative)
      • 2.3 分裂(Divisive)
    • 3. 基于层次聚类算法的Python实现

0. 基于层次的聚类方法

层次聚类(Hierarchical Clustering)类似于一个树状结构,对数据集采用某种方法逐层地进行分解或者汇聚,直到分出的最后一层的所有类别数据满足要求为止。
当数据集不知道应该分为多少类时,使用层次聚类比较适合。
无论是凝聚方法还是分裂方法,一个核心问题是度量两个簇之间的距离,其中每个簇是一个数据样本集合。

划分方法(Partitioning Method)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,使每个样本都属于且只属于一个簇,同时聚类簇的总数小于样本总数目。如k-means和k-medoids。 该方法需要事先给定聚类数以及初始聚类中心,通过迭代的方式使得样本与各自所属类别的簇中心的距离平方和最小,聚类效果很大程度取决于初始簇中心的选择。

1. 簇间距离度量方法

1.1 最小距离

簇C1和C2的距离取决于两个簇中距离最近的数据样本。
d i s t m i n ( C 1 , C 2 ) = m i n P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{min}(C_1,C_2)=\mathop{min}\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distmin(C1,C2)=PiC1,PjCcmindist(Pi,Pj)

只要两个簇类的间隔不是很小,最小距离算法可以很好的分离非椭圆形状的样本分布,但该算法不能很好的分离簇类间含有噪声的数据集。

1.2 最大距离

簇C1和C2的距离取决于两个簇中距离最远的数据样本。
d i s t m a x ( C 1 , C 2 ) = m a x P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{max}(C_1,C_2)=\mathop{max}\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distmax(C1,C2)=PiC1,PjCcmaxdist(Pi,Pj)
最大距离算法可以很好的分离簇类间含有噪声的数据集,但该算法对球形数据的分离产生偏差。

1.3 平均距离

簇C1和C2的距离等于两个簇类中所有样本对的平均距离。
d i s t a v e r a g e ( C 1 , C 2 ) = 1 ∣ C 1 ∣ . ∣ C 2 ∣ ∑ P i ∈ C 1 , P j ∈ C c d i s t ( P i , P j ) dist_{average}(C_1,C_2)=\frac{1}{|C_1|.|C_2|}\sum\limits_{P_i \in C_1,P_j \in C_c}dist(P_i,P_j) distaverage(C1,C2)=C1∣.∣C21PiC1,PjCcdist(Pi,Pj)

1.4 中心法

簇C1和C2的距离等于两个簇中心点的距离。
d i s t m e a n ( C 1 , C 2 ) = d i s t ( M i , M j ) dist_{mean}(C_1,C_2)=dist(M_i,M_j) distmean(C1,C2)=dist(Mi,Mj)
其中M1和M2分别为簇C1和C2的中心点。

1.5 离差平方和

簇类C1和C2的距离等于两个簇类所有样本对距离平方和的平均。
d i s t ( C 1 , C 2 ) = 1 ∣ C 1 ∣ . ∣ C 2 ∣ ∑ P i ∈ C 1 , P j ∈ C c ( d i s t ( P i , P j ) ) 2 dist(C_1,C_2)=\frac{1}{|C_1|.|C_2|}\sum\limits_{P_i \in C_1,P_j \in C_c}(dist(P_i,P_j))^2 dist(C1,C2)=C1∣.∣C21PiC1,PjCc(dist(Pi,Pj))2

2. 基于层次的聚类算法

按照分解或者汇聚的原理不同,层次聚类可以分为两种方法:

2.1 凝聚(Agglomerative)

凝聚的方法,也称为自底向上的方法,初始时每个数据样本都被看成是单独的一个簇,然后通过相近的数据样本或簇形成越来越大的簇,直到所有的数据样本都在一个簇中,或者达到某个终止条件为止。
层次凝聚的代表是AGNES(Agglomerative Nesting)算法。

AGNES算法最初将每个数据样本作为一个簇,然后这些簇根据某些准则被一步步地合并。
这是一种单链接方法,其每个簇可以被簇中所有数据样本代表,两个簇间的相似度由这两个不同簇的距离确定(相似度可以定义为距离的倒数)。
算法描述:
输入:数据样本集D,终止条件为簇数目k
输出:达到终止条件规定的k个簇

  1. 将每个数据样本当成一个初始簇;
  2. 根据两个簇中距离最近的数据样本找到距离最近的两个簇;
  3. 合并两个簇,生成新簇的集合;
  4. 循环step2到step4直到达到定义簇的数目。

2.3 分裂(Divisive)

分裂的方法,也称为自顶向下的方法,它与凝聚层次聚类恰好相反,初始时将所有的数据样本置于一个簇中,然后逐渐细分为更小的簇,直到最终每个数据样本都在单独的一个簇中,或者达到某个终止条件为止。
层次分裂的代表是DIANA(Divisive Analysis)算法。
DIANA算法采用一种自顶向下的策略,首先将所有数据样本置于一个簇中,然后逐渐细分为越来越小的簇,直到每个数据样本自成一簇,或者达到了某个终结条件。
在DIANA方法处理过程中,所有样本初始数据都放在一个簇中。根据一些原则(如簇中最临近数据样本的最大欧式距离),将该簇分裂。簇的分裂过程反复进行,直到最终每个新的簇只包含一个数据样本。
算法描述:
输入:数据样本集D,终止条件为簇数目k
输出:达到终止条件规定的k个簇

  1. 将所有数据样本整体当成一个初始簇;
  2. 在所有簇中挑出具有最大直径的簇;
  3. 找出所挑簇里与其它数据样本平均相异度最大的一个数据样本放入splinter group,剩余的放入old party中;
  4. 在old party里找出到splinter group中数据样本的最近距离不大于到old party 中数据样本的最近距离的数据样本,并将该数据样本加入splinter group;
  5. 循环step2到step4直到没有新的old party数据样本分配给splinter group;
  6. splinter group和old party为被选中的簇分裂成的两个簇,与其他簇一起组成新的簇集合。

3. 基于层次聚类算法的Python实现

AgglomerativeClustering()是scikit-learn提供的层次聚类算法模型,常用形式为:

AgglomerativeClustering(n_clusters=2,affinity='euclidean',memory=None, compute_full_tree='auto', linkage='ward')

参数说明:

  1. n_clusters:int,指定聚类簇的数量。
  2. affinity:一个字符串或者可调用对象,用于计算距离。可以为:’euclidean’、’mantattan’、’cosine’、’precomputed’,如果linkage=’ward’,则affinity必须为’euclidean’。
  3. memory:用于缓存输出的结果,默认为None(不缓存)。
  4. compute_full_tree:通常当训练到n_clusters后,训练过程就会停止。但是如果compute_full_tree=True,则会继续训练从而生成一颗完整的树。
  5. linkage:一个字符串,用于指定链接算法。若取值’ward’:单链接single-linkage,采用distmin;若取值’complete’:全链接complete-linkage算法,采用distmax;若取值’average’:均连接average-linkage算法,采用distaverage。
from sklearn import datasets
from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import pandas as pd
iris = datasets.load_iris()
irisdata = iris.data
clustering = AgglomerativeClustering(linkage='ward', n_clusters= 4)
res = clustering.fit(irisdata)
print ("各个簇的样本数目:")
print (pd.Series(clustering.labels_).value_counts())
print ("聚类结果:")
print (confusion_matrix(iris.target, clustering.labels_))
plt.figure()
d0 = irisdata[clustering.labels_ == 0]
plt.plot(d0[:, 0], d0[:, 1], 'r.')
d1 = irisdata[clustering.labels_ == 1]
plt.plot(d1[:, 0], d1[:, 1], 'go')
d2 = irisdata[clustering.labels_ == 2]
plt.plot(d2[:, 0], d2[:, 1], 'b*')
d3 = irisdata[clustering.labels_ == 3]
plt.plot(d3[:, 0], d3[:, 1], 'c.')
plt.xlabel("Sepal.Length")
plt.ylabel("Sepal.Width")
plt.title("AGNES Clustering")
plt.show()
各个簇的样本数目:
1    50
2    38
0    36
3    26
dtype: int64
聚类结果:
[[ 0 50  0  0][ 1  0 24 25][35  0 14  1][ 0  0  0  0]]

在这里插入图片描述

这篇关于聚类分析|基于层次的聚类方法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850274

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在