[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解)

2024-03-26 04:50

本文主要是介绍[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JDK17完整代码实现:

package SearchAlgorithm.FibonaciiSearch;import java.util.Arrays;public class FibonaciiSearch {public static void main(String[] args) {int[] arr = {1,8,10,89,1000,1200};int targetIndex = fibonaciiSearch(arr,1200);System.out.println(targetIndex);}//斐波那契数列private static int[] fibonaciiList = getFibonaciiList(20);/*** 斐波那契查找算法(非递归算法)* 思路是利用数组长度,计算数组中的黄金分割点mid* 首先要清楚我们要把斐波那契数列中的每一个值当成数组的长度去看待,那么该数组长度的黄金分割点就是斐波那契数列的前一个值* @param arr* @param target* @return*/public static int fibonaciiSearch(int[] arr, int target) {//举例arr数组{1,8,10,89,1000,1200}int left = 0;int right = arr.length - 1;//k是指向斐波那契数列的索引,k所对应的斐波那契值(fibonaciiList[k])则是当前在left到right范围内数组的长度int k = 0;//找到该数组长度所位于斐波那契数列的位置索引k,再强调一下,斐波那契数列的每一个值我们都看成是数组的长度//现在要找的k,是当前数组长度在斐波那契数列中的位置索引while (arr.length > fibonaciiList[k]){k++;}//                          k//                          ↓//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//斐波那契数组索引: [0,1,2,3,4,5, 6,...]//                          ↑//                          k//假设我们要找的数组是:{1,8,10,89,1000,1200},数组长度是6,那么该数组长度在斐波那契数列中对应的数组长度就应该是8//k是斐波那契数列的索引,所以k应该是5//如果当前k值对应的斐波那契值大于数组下标,则需要创建临时数组复制原数组并扩容至fibonaciiList[k]//再说一遍,斐波那契数组里面的每一个值都看成是数组的长度,那么,当前k所指向的斐波那契值是8,也就是要求要查找的数组arr需要有8个元素才符合对黄金分割点mid的计算int[] temp = Arrays.copyOf(arr, fibonaciiList[k]);//将填充的数据替换成arr的最后一个元素for (int i = arr.length; i < temp.length; i++) {temp[i] = arr[arr.length - 1];}//扩充并替换后的数组temp:{1,8,10,89,1000,1200,1200,1200}//mid是黄金分割点的索引int mid = 0;while (left <= right){//k == 0 说明当前查找的子序列只剩下一个元素。别忘了,k是斐波那契数列的下标,k==0说明f[k]==1,说明当前子序列长度为1if (k == 0){mid = left;}else {//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//                          ↑//                          k//先摆公式      mid = left + f[k-1] -1//我们知道,黄金分割点mid的索引,其实是当前数组长度f[k],在斐波那契数列中位置的前一个斐波那契值f[k-1]//比如,当前数组长度是8,那么他的黄金分割比例就应该是5:3。再比如,如果当前数组长度是13,那么他的黄金分割比例应该是8:5//而黄金分割点mid,就是用来分割数组的,mid索引左右两边的子序列长度应该要满足黄金分割的比例//             left          mid  right//               ↓            ↓   ↓//数组temp:      {1,8,10,89,1000,1200,1200,1200}//temp数组索引:   [0,1, 2, 3,  4 , 5  ,  6 , 7  ]//                           ↑//                          mid//也就是说,我们应该要保证   mid的左子序列(包含mid)要有5个元素,  mid的右子序列(不包含mid)要有3个元素//所以黄金分割点按照上面的分析应该是mid = f[k-1] = 5,但是公式 mid = left + f[k-1] - 1 ,为什么最后还要再减1呢?//很显然,别忘记我们编程世界里的数组下标都是从0开始的,temp数组的索引是从0开始的,如果我们直接把f[k-1]当成mid的索引,显然不符合黄金分割比例的mid = left + fibonaciiList[k - 1] - 1;}if (target == temp[mid]){//如果temp[mid]就是目标值,而且当前mid不在扩充区就直接返回mid索引,否则返回right索引//                                 left//                                   ↓//比如数组temp:      {1,8,10,89,1000,1200,1200,1200} ,显然最后两个元素是扩充区,是原本arr数组没有的//                                   ↑    ↑//                                right  mid//这里说一下为什么mid会跑到left跟right的限定范围外?//因为当我们要找的目标值大于temp[mid]的时候,想要向右找子序列只会动left索引,right索引并不会去动它,计算出来的mid值是有可能超过left的,所以就可能会出现上面这种情况if (mid <= right) {return mid;}else {return right;}} else if (target < temp[mid]) {//目标值小于mid,向左找//这里解释为什么要k--?//                          k//                          ↓//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//数组temp:      {1,8,10,89,1000,1200,1200,1200}//               ↑           ↑    ↑//             left         mid  right//因为当前数组长度是8,那么按照黄金分割比例,应该是mid左边(含mid)有五个元素,mid右边(不含mid)有3个元素//当我们想往左找目标值的时候,刚好k-1对应的斐波那契值就是5,而左边的子序列长度就是4,这时候就不需要扩容操作了,因为后面有元素,不会出现数组下标越界的情况//k--就是为了下一次循环做准备right = mid - 1;k--;} else if (target > temp[mid]) {//目标值大于mid,向右找//同往左找同理,往右找为什么需要k-2 ?//因为mid右边的子序列长度是3,刚好k-2对应的斐波那契值就是3,这样k=k-2就能保证我们下一次循环的k能够跟子序列数组长度3对应上left = mid + 1 ;k -= 2;}}//能出循环说明没找到目标值return -1;}/*** 获取斐波那契数列* @return*/public static int[] getFibonaciiList(int maxSize){int[] fibonaciiList = new int[maxSize];fibonaciiList[0] = 1;fibonaciiList[1] = 1;for (int i = 2; i < fibonaciiList.length; i++) {fibonaciiList[i] = fibonaciiList[i - 1] + fibonaciiList[i - 2];}return fibonaciiList;}
}

这篇关于[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847335

相关文章

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert