[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解)

2024-03-26 04:50

本文主要是介绍[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JDK17完整代码实现:

package SearchAlgorithm.FibonaciiSearch;import java.util.Arrays;public class FibonaciiSearch {public static void main(String[] args) {int[] arr = {1,8,10,89,1000,1200};int targetIndex = fibonaciiSearch(arr,1200);System.out.println(targetIndex);}//斐波那契数列private static int[] fibonaciiList = getFibonaciiList(20);/*** 斐波那契查找算法(非递归算法)* 思路是利用数组长度,计算数组中的黄金分割点mid* 首先要清楚我们要把斐波那契数列中的每一个值当成数组的长度去看待,那么该数组长度的黄金分割点就是斐波那契数列的前一个值* @param arr* @param target* @return*/public static int fibonaciiSearch(int[] arr, int target) {//举例arr数组{1,8,10,89,1000,1200}int left = 0;int right = arr.length - 1;//k是指向斐波那契数列的索引,k所对应的斐波那契值(fibonaciiList[k])则是当前在left到right范围内数组的长度int k = 0;//找到该数组长度所位于斐波那契数列的位置索引k,再强调一下,斐波那契数列的每一个值我们都看成是数组的长度//现在要找的k,是当前数组长度在斐波那契数列中的位置索引while (arr.length > fibonaciiList[k]){k++;}//                          k//                          ↓//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//斐波那契数组索引: [0,1,2,3,4,5, 6,...]//                          ↑//                          k//假设我们要找的数组是:{1,8,10,89,1000,1200},数组长度是6,那么该数组长度在斐波那契数列中对应的数组长度就应该是8//k是斐波那契数列的索引,所以k应该是5//如果当前k值对应的斐波那契值大于数组下标,则需要创建临时数组复制原数组并扩容至fibonaciiList[k]//再说一遍,斐波那契数组里面的每一个值都看成是数组的长度,那么,当前k所指向的斐波那契值是8,也就是要求要查找的数组arr需要有8个元素才符合对黄金分割点mid的计算int[] temp = Arrays.copyOf(arr, fibonaciiList[k]);//将填充的数据替换成arr的最后一个元素for (int i = arr.length; i < temp.length; i++) {temp[i] = arr[arr.length - 1];}//扩充并替换后的数组temp:{1,8,10,89,1000,1200,1200,1200}//mid是黄金分割点的索引int mid = 0;while (left <= right){//k == 0 说明当前查找的子序列只剩下一个元素。别忘了,k是斐波那契数列的下标,k==0说明f[k]==1,说明当前子序列长度为1if (k == 0){mid = left;}else {//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//                          ↑//                          k//先摆公式      mid = left + f[k-1] -1//我们知道,黄金分割点mid的索引,其实是当前数组长度f[k],在斐波那契数列中位置的前一个斐波那契值f[k-1]//比如,当前数组长度是8,那么他的黄金分割比例就应该是5:3。再比如,如果当前数组长度是13,那么他的黄金分割比例应该是8:5//而黄金分割点mid,就是用来分割数组的,mid索引左右两边的子序列长度应该要满足黄金分割的比例//             left          mid  right//               ↓            ↓   ↓//数组temp:      {1,8,10,89,1000,1200,1200,1200}//temp数组索引:   [0,1, 2, 3,  4 , 5  ,  6 , 7  ]//                           ↑//                          mid//也就是说,我们应该要保证   mid的左子序列(包含mid)要有5个元素,  mid的右子序列(不包含mid)要有3个元素//所以黄金分割点按照上面的分析应该是mid = f[k-1] = 5,但是公式 mid = left + f[k-1] - 1 ,为什么最后还要再减1呢?//很显然,别忘记我们编程世界里的数组下标都是从0开始的,temp数组的索引是从0开始的,如果我们直接把f[k-1]当成mid的索引,显然不符合黄金分割比例的mid = left + fibonaciiList[k - 1] - 1;}if (target == temp[mid]){//如果temp[mid]就是目标值,而且当前mid不在扩充区就直接返回mid索引,否则返回right索引//                                 left//                                   ↓//比如数组temp:      {1,8,10,89,1000,1200,1200,1200} ,显然最后两个元素是扩充区,是原本arr数组没有的//                                   ↑    ↑//                                right  mid//这里说一下为什么mid会跑到left跟right的限定范围外?//因为当我们要找的目标值大于temp[mid]的时候,想要向右找子序列只会动left索引,right索引并不会去动它,计算出来的mid值是有可能超过left的,所以就可能会出现上面这种情况if (mid <= right) {return mid;}else {return right;}} else if (target < temp[mid]) {//目标值小于mid,向左找//这里解释为什么要k--?//                          k//                          ↓//斐波那契数组:   {1,1,2,3,5,8,13,...},里面每一个值都看成是数组长度//数组temp:      {1,8,10,89,1000,1200,1200,1200}//               ↑           ↑    ↑//             left         mid  right//因为当前数组长度是8,那么按照黄金分割比例,应该是mid左边(含mid)有五个元素,mid右边(不含mid)有3个元素//当我们想往左找目标值的时候,刚好k-1对应的斐波那契值就是5,而左边的子序列长度就是4,这时候就不需要扩容操作了,因为后面有元素,不会出现数组下标越界的情况//k--就是为了下一次循环做准备right = mid - 1;k--;} else if (target > temp[mid]) {//目标值大于mid,向右找//同往左找同理,往右找为什么需要k-2 ?//因为mid右边的子序列长度是3,刚好k-2对应的斐波那契值就是3,这样k=k-2就能保证我们下一次循环的k能够跟子序列数组长度3对应上left = mid + 1 ;k -= 2;}}//能出循环说明没找到目标值return -1;}/*** 获取斐波那契数列* @return*/public static int[] getFibonaciiList(int maxSize){int[] fibonaciiList = new int[maxSize];fibonaciiList[0] = 1;fibonaciiList[1] = 1;for (int i = 2; i < fibonaciiList.length; i++) {fibonaciiList[i] = fibonaciiList[i - 1] + fibonaciiList[i - 2];}return fibonaciiList;}
}

这篇关于[JDK17]斐波那契查找算法的实现原理、公式由来以及代码的实现(代码详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/847335

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象