算法打卡day28|贪心算法篇02|Leetcode 122.买卖股票的最佳时机 II、55. 跳跃游戏、45.跳跃游戏 II

本文主要是介绍算法打卡day28|贪心算法篇02|Leetcode 122.买卖股票的最佳时机 II、55. 跳跃游戏、45.跳跃游戏 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法题

Leetcode 122.买卖股票的最佳时机 II

题目链接:122.买卖股票的最佳时机 II

 大佬视频讲解:买卖股票的最佳时机 II视频讲解

 个人思路

因为只有一只股票,且两天作一个交易单元,那每次只收集正利润就可以最终最多可以获取的利润,可以用贪心。

解法
贪心法

从下图可以发现,其实收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而且只需要关注最终利润,不需要记录区间

局部最优:收集每天的正利润,全局最优:求得最大利润

class Solution {public int maxProfit(int[] prices) {int result = 0;//最终利润for (int i = 1; i < prices.length; i++) {result += Math.max(prices[i] - prices[i - 1], 0);//只收集正利润}return result;}
}

时间复杂度:O(n!);(遍历整个数组)

空间复杂度:O(1);(常量级的变量)


 Leetcode  55. 跳跃游戏

题目链接:55. 跳跃游戏

大佬视频讲解:跳跃游戏视频讲解

个人思路

可以每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围,当覆盖范围盖过终点 就代表能跳到终点。每步取最优,最后推出全局最优,用贪心。

解法
贪心法

这个问题转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。而 cover 每次只取 max;如果 cover 大于等于了终点下标,直接 return true 。

class Solution {public boolean canJump(int[] nums) {if (nums.length == 1) {return true;}int coverRange = 0; //覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的//在覆盖范围内更新最大的覆盖范围for (int i = 0; i <= coverRange; i++) {coverRange = Math.max(coverRange, i + nums[i]);if (coverRange >= nums.length - 1) {//找到覆盖终点return true;}}return false;}
}

时间复杂度:O(n!);(遍历整个数组)

空间复杂度:O(1);(常量级的变量)


 Leetcode  45.跳跃游戏 II

题目链接:45.跳跃游戏 II

大佬视频讲解:跳跃游戏 II视频讲解

 个人思路

这道题和上一题思路类似;只是本题要计算最少步数。在计算时,当前可移动距离尽可能多走,如果还没到终点,步数再加一。一步尽可能多走,从而达到最少步数。局部可以推全局,用贪心。

解法
贪心法

在解题时要注意,不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数.

所以这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点.

class Solution {public int jump(int[] nums) {int result = 0;//步数int end = 0;// 当前覆盖的最远距离下标int temp = 0;// 下一步覆盖的最远距离下标//移动下标i只要遇到当前覆盖最远距离的下标,直接步数加一for (int i = 0; i <= end && end < nums.length - 1; ++i) {temp = Math.max(temp, i + nums[i]);//更新最大覆盖范围if (i == end) {// 可达位置的改变次数就是跳跃次数end = temp;result++;}}return result;}
}

时间复杂度:O(n);(遍历整个数组)

空间复杂度:O(1);(常量级变量)


 以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day28|贪心算法篇02|Leetcode 122.买卖股票的最佳时机 II、55. 跳跃游戏、45.跳跃游戏 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/846504

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第