在没有康托尔对角化方法的情况下证明实数的不可数性

2024-03-25 08:20

本文主要是介绍在没有康托尔对角化方法的情况下证明实数的不可数性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

乔治·康托尔 |图片来源: 维基百科

一、说明

        对于那些对数学感兴趣的人来说,无穷大实际上可以有不同的大小,这可能是一个众所周知的事实。事实上,最著名的例子是所有实数的集合比所有自然数的集合“大”。你可能知道,这实际上有一个非常优雅的证明,称为康托尔对角线方法,由乔治·康托尔在1891年提出。如果您不知道这一点,我绝对建议您研究一下,因为我认为该方法非常聪明,但同时任何人都很容易理解。

        然而,在这篇文章中,呈述通过一种稍微严格的方法来证明实数是不可数的,这种方法涉及集合的概念。虽然我不会声称这是完全严格的,但我确实发现这仍然是解决这个问题的一种非常有趣的方法。     

        此外,在这篇文章中,我将假设对集合是什么以及集合之间的交集意味着什么有一个基本的了解。

二、嵌套间隔属性

        在继续之前,我想介绍一个重要的定理,称为嵌套区间属性,它将用于证明实数是不可数的。嵌套间隔属性声明如下:

对于每个 n ∈ N,假设我们给定一个区间 In = [an, bn] = {x ∈ R : 一个< x < bn}。 还假设每个间隔包含下一个(即 In ⊆...⊆ I₂⊆ I₁)。然后,这个嵌套的区间序列将有一个非空的交集。

        在数学上,我们可以将结果表示如下:

        为了更轻松地解释嵌套间隔属性,请考虑实数上的任何间隔,并将其设为 I₁。现在考虑在该区间内新建一个区间,并将其设为 I₂。现在一遍又一遍地重复这个过程。因此,您将获得如下所示的嵌套间隔:

        嵌套间隔 |图片来源:维基百科

        嵌套间隔属性声称所有这些间隔的交集都是非空的,我们能够找到一些 x ∈ I₁I₂⋂...⋂无论n有多大。虽然可以通过引入其他公理和概念来提供嵌套间隔属性的证明,但为了这篇文章,我会认为这是理所当然的。

三、实数的不可数性

        配备嵌套间隔属性,我们可以尝试证明实数确实是不可数的。首先,让我们首先考虑“可数”的真正含义。

        如果集合 A 与自然数 N 有 1-1 的对应关系,则认为它是可数的。简单来说,如果 A 与 N 有 1-1 的对应关系,这意味着我们可以找到一个函数 : N → A,使得 N 中的每个元素正好对应于 A 中的一个元素反之亦然(稍微具体的解释是 f 是 1-1 和 onto)。另一种说明方式是,中的每个元素都可以使用自然数进行编号

        了解了集合可数的含义后,我们现在可以开始证明了。对于这个证明,我们将使用矛盾证明的方法,首先假设实数实际上是可数的。这意味着 N 和 R 之间实际上存在 1-1 的对应关系,由某个函数 : →R 给出。换句话说,我们能够枚举实数,我们可以通过让 xn = fn) 来表示实数,为 R 给出以下表达式:

        因此,我们使用自然数枚举了 R 的每个元素。这就是嵌套间隔属性发挥作用的地方。

        首先,让 I₁ 是 R 上不包含 x₁ 的闭区间。在此之后,我们将构造剩余的嵌套间隔 In,它们具有以下属性:

        要解释这意味着什么,请考虑 I₂。由于第一个属性,I₂ 是 I 的子集,由于第二个属性,x₂ 不在 I 中。 对 I₃I₄ 等重复此操作。请注意,应该直观地理解为什么这样的区间序列是可能的,因为给定某个区间,只需简单地避免该数字,就不难创建嵌套在该区间中不包含特定实数的另一个区间。

        现在,考虑我们刚刚构建的所有这些区间之间的交集。如果我们在上面的枚举实数列表中包含一些实数 xm,那么我们知道它不会是第 m 个区间 Im 的一个元素,因为这些区间的上述属性。因此,我们可以得出以下结论:

        但是,嵌套间隔属性告诉我们,这些嵌套间隔的交集必须是非空的,并且我们能够找到一些 x,例如:

        但是通过这些区间的性质,我们知道这个新发现的x不能出现在我们在假设中创建的实数枚举列表中。因此,我们有一个明显的矛盾,并且可以得出结论,我们关于R是可数的假设一定是假的,这表明R确实是不可数的。

        虽然这种使用区间的相当抽象的方法肯定不如康托尔的对角线化方法直观,但我认为看到一种更严格的方法涉及从实际分析中理解集合和函数是相当有启发性的。但是,这个证明肯定仍然存在缺陷,我没有完全解释的事情,所以如果你有兴趣,我肯定会建议你多读一读。我使用的这个特殊证明改编自雅培的理解分析(下面引用),这是我推荐阅读的一本很棒的教科书,其中还包括我跳过的嵌套间隔属性的证明。感谢您的阅读。

四、引用

雅培,S.(2016)。了解分析。斯普林格。

坂本健成

这篇关于在没有康托尔对角化方法的情况下证明实数的不可数性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/844391

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

电脑死机无反应怎么强制重启? 一文读懂方法及注意事项

《电脑死机无反应怎么强制重启?一文读懂方法及注意事项》在日常使用电脑的过程中,我们难免会遇到电脑无法正常启动的情况,本文将详细介绍几种常见的电脑强制开机方法,并探讨在强制开机后应注意的事项,以及如何... 在日常生活和工作中,我们经常会遇到电脑突然无反应的情况,这时候强制重启就成了解决问题的“救命稻草”。那